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Abstract: We firstly give out the formulas for calculating the upper and lower approximation strict left (right)-conjunctive left 

(right) semi-uninorms of a binary operation. Then, we lay bare the formulas for calculating the upper and lower approximation 

implications, which satisfy the order property, of a binary operation. Finally, we reveal the relationships between the upper 

approximation strict left (right)-conjunctive left (right) arbitrary ˅-distributive left (right) semi-uninorms and lower 

approximation right arbitrary ˄-distributive implications which satisfy the order property. 
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1. Introduction 

In fuzzy logic systems (see [1-2]), connectives “and”, “or” 

and “not” are usually modeled by t-norms, t-conorms, and 

strong negations on [0, 1]  (see [3]), respectively. Based on 

these logical operators on [0, 1] , the three fundamental 

classes of fuzzy implications on [0, 1] , i.e., R-, S-, and 

QL-implications on [0, 1] , were defined and extensively 

studied. But, as was pointed out by Fodor and Keresztfalvi [4], 

sometimes there is no need of the commutativity or 

associativity for the connectives “and” and “or”. Thus, many 

authors investigated implications based on some other 

operators like weak t-norms [5], pseudo t-norms [6], 

pseudo-uninorms [7], left and right uninorms [8], 

semi-uninorms [9], aggregation operators [10] and so on. 

Uninorms, introduced by Yager and Rybalov [11], and 

studied by Fodor et al. [12], are special aggregation operators 

that have proven useful in many fields like fuzzy logic, expert 

systems, neural networks, aggregation, and fuzzy system 

modeling. This kind of operation is an important 

generalization of both t-norms and t-conorms and a special 

combination of t-norms and t-conorms. But, there are real-life 

situations when truth functions cannot be associative or 

commutative. By throwing away the commutativity from the 

axioms of uninorms, Mas et al. introduced the concepts of left 

and right uninorms on [0, 1]  in [13] and later in a finite chain 

in [14], and Wang and Fang [8, 15] studied the left and right 

uninorms on a complete lattice. By removing the associativity 

and commutativity from the axioms of uninorms, Liu [9] 

introduced the concept of semi-uninorms, and Su et al. [16] 

discussed the notions of left and right semi-uninorms, on a 

complete lattice. On the other hand, it is well known that a 

uninorm (semi-uninorm) U  can be conjunctive or 

disjunctive whenever (0, 1) 0U =  or 1, respectively. This fact 

allows us to use uninorms in defining fuzzy implications. 

Constructing fuzzy connectives is an interesting topic. 

Recently, Jenei and Montagna [17] introduced several new 

types of constructions of left-continuous t-norms, Wang [18] 

laid bare the formulas for calculating the smallest 

pseudo-t-norm that is stronger than a binary operation and the 

largest implication that is weaker than a binary operation, Su 

et al. [16] studied the constructions of left and right 

semi-uninorms on a complete lattice, Su and Wang [19] 

investigated the constructions of implications and 

coimplications on a complete lattice. and Wang et al. [20-22] 

studied the relations among implications, coimplications and 

left (right) semi-uninorms, on a complete lattice. Moreover, 

Wang et al. [23-24] investigated the constructions of 

conjunctive left (right) semi-uninorms, disjunctive left (right) 
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semi-uninorms, strict left (right)-disjunctive left (right) 

semi-uninorm, implications and coimplications satisfying the 

neutrality principle. 

This paper is a continuation of [16, 19, 23-24]. Motivated 

by these works in [16, 19, 23-24], we will further focus on this 

issue and investigate constructions of the upper and lower 

approximation strict left (right)-conjunctive left (right) 

semi-uninorms and the upper and lower approximation 

implications which satisfy the order property. 

This paper is organized as follows. In Section 2, we give out 

the formulas for calculating the upper and lower 

approximation strict left (right)-conjunctive left (right) 

semi-uninorms of a binary operation. In Section 3, we lay bare 

the formulas for calculating the upper and lower 

approximation implications, which satisfy the order property, 

of a binary operation. In Section 4, we reveal the relationships 

between the upper approximation strict left 

(right)-conjunctive left (right) arbitrary ∨ -distributive left 

(right) semi-uninorms and lower approximation right arbitrary 

∧ -distributive implications which satisfy the order property, 

and find out some conditions such that the lower 

approximation strict left (right)-conjunctive left (right) 

semi-uninorm of a binary operation and upper approximation 

implication, which satisfies the order property, of left (right) 

residuum of the binary operation satisfy the generalized 

modus ponens rule.  

The knowledge about lattices required in this paper can be 

found in [25]. 

Throughout this paper, unless otherwise stated, L  always 

represents any given complete lattice with maximal element 1 

and minimal element 0; J stands for any index set.  

2. Strict Conjunctive Left and Right 

Semi-Uninorms 

In this section, we firstly recall some necessary concepts 

about the strict conjunctive left (right) semi-uninorms on a 

complete lattice. 

Definition 2.1 (Su et al. [16]). A binary operation U on L  

is called a left (right) semi-uninorm if it satisfies the following 

two conditions: 

(U1) there exists a left (right) neutral element, i.e., an 

element Le L∈  ( Re L∈ ) satisfying ( , )LU e x x=  

( ( , )RU x e x=  for all x L∈ , 

(U2) U is non-decreasing in each variable. 

Clearly, (0, 0) 0U =  and (1, 1) 1U = hold for any left (right) 

semi-uninorm U  on L . 

If a left (right) semi-uninorm U  is associative, then U is 

the left (right) uninorm [8, 15] on L . 

If a left (right) semi-uninorm U  with the left (right) 

neutral element Le L∈  ( Re L∈ ) has a right (left) neutral 

element Re L∈  ( Le L∈ ), then ( , )UL L R Re e e e= = . Let 

L Re e e== . Here, U  is the semi-uninorm [9]. 

For any left (right) semi-uninorm U  on L , U  is said to 

be left-conjunctive and right-conjunctive if (0, 1) 0U =  and 

(1, 0) 0U = , respectively. U  is said to be conjunctive if both 

(1, 0) 0U =  and (1, 0) 0U =  since it satisfies the classical 

boundary conditions of AND.  

U  is said to be strict left-conjunctive and strict right- 

conjunctive if U  is conjunctive and for any 

, ( , 1) 0 0x L U x x∈ = ⇔ =  and (1, ) 0 0U x x= ⇔ = , 

respectively. 

Definition 2.2 (Wang and Fang [8]). A binary operation U  

on L  is called left (right) arbitrary ∨ -distributive if 

( , ) ( , ) ,j j jj J j JU x y U x y x y L∈ ∈∨ = ∨ ∀ ∈
 

( )( , ) ( , ) ,j j jj J j JU x y U x y x y L∈ ∈∨ = ∨ ∀ ∈ ;     (1) 

left (right) arbitrary ∧ -distributive if 

( , ) ( , ) ,j j jj J j JU x y U x y x y L∈ ∈∧ = ∧ ∀ ∈
 

( )( , ) ( , ) ,j j jj J j JU x y U x y x y L∈ ∈∧ = ∧ ∀ ∈ .    (2) 

If a binary operation U  is left arbitrary ∨ -distributive ( ∧ - 

distributive) and also right arbitrary ∨ -distributive ( ∧
-distributive), then U  is said to be arbitrary ∨ -distributive 

( ∧ -distributive). 

For the sake of convenience, we introduce the following 

symbols: 

( )Lse

cs
U L : the set of all strict left-conjunctive left 

semi-uninorms with the left neutral element Le on L ; 

( )Re s

cs
U L : the set of all strict right-conjunctive right 

semi-uninorms with the right neutral element Re  on L ; 

( )Lse

cs
U L∨ : the set of all strict left-conjunctive left arbitrary 

∨ -distributive left semi-uninorms with the left neutral 

element Le  on L ; 

( )Re s

cs
U L∨ : the set of all strict right-conjunctive right arbitrary 

∨ -distributive right semi-uninorms with the right neutral 

element 
Re  on L . 

Below, we illustrate these notions by means of two 

examples. 

Example 2.1. Let Le L∈ , 

0 if 0 or 0,

( , ) if 0 , 0,

1 otherwise,

Le

csM L

x y

U x y y x e y

= =
= < ≤ ≠



 

if ,

( , ) { | 0} if 0 not , 1,

0 otherwise.

L

L

se

csW L

y x e

U x y a L a x e y

≥
= ∧ ∈ ≠ < ≥ =



 

where x  and y  are elements of L . By Example 2 and 

Theorem 8 in [20], we see that ( )Lse

csU L  and ( )Lse

csU L∨  are 

two join-semilattices with the greatest element Le

csMU . When 
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0Le ≠  and { | 0} 0a L a∧ ∈ ≠ ≠ , it is straightforward to 

verify that Lse

csW
U  is the smallest element of ( )Lse

cs
U L . 

Moreover, assume that { | not } notL La L a e e∨ ∈ ≥ ≥ . 

Lse

csW
U  is left arbitrary ∨ -distributive and the smallest 

element of ( )Lse

cs
U L∨ . 

Example 2.2. Let Re L∈ , 

0 if 0 or 0,

( , ) if 0 , 0,

1 otherwise,

Re

csM R

x y

U x y x y e x

= =
= < ≤ ≠



 

if ,

( , ) { | 0} if 0 not , 1,

0 otherwise.

R

R

e s

csW R

x y e

U x y a L a y e x

≥
= ∧ ∈ ≠ < ≥ =



 

where x  and y  are elements of L . By Example 3 and 

Theorem 8 in [20], we see that ( )Re s

csU L  and ( )Re s

csU L∨  are 

two join-semilattices with the greatest element Re

csMU . 

 Similarly, When 0Le ≠  and { | 0} 0a L a∧ ∈ ≠ ≠ , Re s

csWU  

is the smallest element of ( )Re s

csU L . Moreover, if

{ | not } notR Ra L a e e∨ ∈ ≥ ≥ , then Re s

csWU  is the smallest 

element of ( )Re s

csU L∨ . 

Constructing aggregation operators is an interesting work. 

Recently, Jenei and Montagna [17] introduced several new 

types of constructions of left-continuous t-norms, Su et al. [16] 

studied the constructions of left and right semi-uninorms on a 

complete lattice, and Wang et al. [23-24] investigated the 

constructions of conjunctive left (right) semi-uninorms and 

disjunctive left (right) semi-uninorms on a complete lattice. 

Now, we continue this work and give out the formulas for 

calculating the upper and lower approximation strict left 

(right)-conjunctive left (right) semi-uninorms of a binary 

operation. 

It is easy to verify that ( )Lse

j J j csU U L∈ ∈∨  for any 

nonempty subset |{ }jU j J∈  of ( )Lse

csU L . If 0Le ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ , then ( )Lse

csU L  is a complete lattice with 

the smallest element Lse

csWU  and greatest element Le

csMU  by 

Example 2.1. Thus, for a binary operation A  on L , if there 

exists ( )Lse

csU U L∈  such that A U≤ , then 

{ | , ( )}Lse

csU A U U U L∧ ≤ ∈                (3) 

is the smallest strict left-conjunctive left semi-uninorm that is 

stronger than A  on L , we call it the upper approximation 

strict left-conjunctive left semi-uninorm of A  and write as 

[ ) Lse

csA ; if there exists ( )Lse

csU U L∈  such that U A≤ , then 

{ | , ( )}Lse

csU U A U U L∨ ≤ ∈                (4) 

is the largest strict left-conjunctive left semi-uninorm that is 

weaker than A  on L , we call it the lower approximation 

strict left-conjunctive left semi-uninorm of A  and write as 

( ] Lse

csA . 

Similarly, we introduce the following symbols: 

[ ) :Re s

csA  the upper approximation strict right-conjunctive 

right semi-uninorm of A ; 

( ] Re s

csA : the lower approximation strict right-conjunctive 

right semi-uninorm of A ; 

[ ) Lse

csA ∨ : the upper approximation strict left-conjunctive left 

arbitrary ∨ -distributive left semi-uninorm of A ; 

( ] Lse

csA ∨ : the lower approximation strict left-conjunctive left 

arbitrary ∨ -distributive left semi-uninorm of A ; 

[ ) Re s

csA ∨ : the upper approximation strict right-conjunctive 

right arbitrary ∨ -distributive right semi-uninorm of A ; 

( ] Re s

csA ∨ : the lower approximation strict right-conjunctive 

right arbitrary ∨ -distributive right semi-uninorm of A . 

Definition 2.3 (Su et al. [16]). Let A  be a binary operation 

on L . Define the upper approximation aggregator 
uaA  and 

the lower approximation aggregator 
laA  of A  as follows: 

( , ) { ( , ) | , } , ,uaA x y A u v u x v y x y L= ∨ ≤ ≤ ∀ ∈      (5) 

( , ) { ( , ) | , } , .laA x y A u v u x v y x y L= ∧ ≥ ≥ ∀ ∈      (6) 

Theorem 2.1 (Su et al. [16]). Let ,
L L

A B L
×∈ . Then the 

following statements hold: 

la uaA A A≤ ≤ .                  (7) 

( )ua ua uaA BA B = ∨∨  and  

( )la la laA BA B = ∧∧ .               (8) 

uaA  and laA  are non-decreasing in its each variable. 

If A is non-decreasing in its each variable, then 

ua laA A A= = .                 (9) 

Theorem 2.2. Let 
L L

A L
×∈ .  

(1) If A  is left (right) arbitrary ∨ -distributive, then 

uaA  is left (right) arbitrary ∨ -distributive. 

(2) If A  is left (right) arbitrary ∧ -distributive, then   

laA  is left (right) arbitrary ∧ -distributive. 

Proof. We only prove that statement (1) holds. 

If A  is left arbitrary ∨ -distributive, then A  is 

non-decreasing in its first variable, 

( , ) { ( , ) | , }

{ ( , ) | } , ,

ua
A x y A u v u x v y

A x v v y x y L

= ∨ ≤ ≤
= ∨ ≤ ∀ ∈

      (10) 
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( , ) { ( , ) | }

{ ( , ) | } { ( , ) | }

( , ) , ( ),

ua j J j j J j

j J j j J j

j J ua j j

A x y A x v v y

A x v v y A x v v y

A x y x y L j J

∈ ∈

∈ ∈

∈

∨ = ∨ ∨ ≤

= ∨ ∨ ≤ = ∨ ∨ ≤

= ∨ ∀ ∈ ∈
  (11) 

i.e., 
uaA  is left arbitrary ∨ -distributive. 

Similarly, we can show that 
uaA  is right arbitrary ∨

-distributive when A  is right arbitrary ∨ -distributive. 

The theorem is proved. 

Below, we give out the formulas for calculating the upper 

and lower approximation strict left (right)-conjunctive left 

(right) semi-uninorms of a binary operation. 

Theorem 2.3. Suppose that 
L L

A L
×∈ , 0Le ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ . 

(1) If Le

csMA U≤ , then [ ) L Lse se

cs csW uaA U A= ∨ ; 

 if 
se

L
csW

U A≤ , then ( ] L Lse e

cs csM laUA A= ∧ . 

(2) If { | not }notL La L a e e∨ ∈ ≥ ≥ , Le

csMA U≤  and A  

is left arbitrary ∨ -distributive, then 

[ ) L Lse se

cs csW uaA U A∨ = ∨ .            (12) 

Moreover, if A  is non-decreasing in its second variable, 

then [ ) L Lse se

cs csWA U A∨ = ∨ . 

Proof. Assume that 0Le ≠  and { | 0} 0a L a∧ ∈ ≠ ≠ . Then 

Lse

csW
U  and Le

csM
U  are, respectively, the smallest and greatest 

elements of ( )Lse

cs
U L  by Example 2.1. 

(1) Let 1
Lse

csW ua
U U A= ∨ . If Le

csM
A U≤ , then 1A U≤ , 

( )L Le e

ua csM ua csM
A U U≤ = . Thus,  

1
L Le e

csW csM
U U U≤ ≤ .               (13) 

It implies that 1 1(1, 0) (0, 1) 0U U= =  and 1( , )LU e y y=  for 

any y L∈ . If 1( , 1) 0U x = , then ( , 1) 0
se

L
csW

U x =  and so 

0x = , i.e., 1U  is strict left-conjunctive. By Theorem 2.1(3) 

and the monotonicity of 
se

L
csW

U , we can see that 1U  is 

non-decreasing in its each variable. So, 1
( )Lse

cs
U U L∈ . If 

A U≤  and ( )L
se

cs
U U L∈ , then ua uaA U U≤ =  and 

1
Lse

csW ua
U U A U= ∨ ≤ . Therefore, 

[ ) L Lse se

cs csW ua
A U A= ∨ .              (14) 

Let 2
Le

csM la
U U A= ∧ . If Lse

csW
U A≤ , then 

( )L Lse se

csW csW la la
U U A= ≤  and 2

L Lse e

csW csM
U U U≤ ≤ .      (15) 

Thus, 2 2(1, 0) (0, 1) 0U U= =  and 2 ( , )LU e y y=  for any 

y L∈  and 2U  is strict left-conjunctive. By Theorem 2.1(3) 

and the monotonicity of 
e
L

csM
U , we know that 2U  is 

non-decreasing in its each variable. So, 2
( )Lse

cs
U U L∈ . If 

U A≤  and ( )L
se

cs
U U L∈ , then la laU U A= ≤  and 

2
Le

csM la
U U A U≤ ∧ = . Therefore,  

( ] L
e
L

csM la

se
U

cs
A A= ∧ .               (16) 

(2) When { | not }notL La L a e e∨ ∈ ≥ ≥ , Lse

csW
U  and Le

csM
U  

are, respectively, the smallest and greatest elements of 

( )Lse

cs
U L∨  by Example 2.1. Let 3

Lse

csW ua
U U A= ∨ . If Le

csM
A U≤ , 

then 3
( )Lse

cs
U U L∈  by statement (1). Noting that A  is left 

arbitrary ∨ -distributive, we can see that uaA  is also left 

arbitrary ∨ -distributive by Theorem 2.2(1). Thus, 3U  is left 

arbitrary ∨ -distributive and 3
( )Lse

cs
U U L∨∈ . By the proof of 

statement (1), we have that [ ) L Lse se

cs csW ua
A U A∨ = ∨ . 

Moreover, if A  is non-decreasing in its second variable, 

then uaA A=  by Theorem 2.1(4) and so 

[ ) L Lse se

cs csW
A U A∨ = ∨ .              (17) 

The theorem is proved. 

Similarly, for calculating the upper and lower 

approximation strict right-conjunctive right semi-uninorms of 

a binary operation, we have the following theorem. 

Theorem 2.4. Suppose that L LA L ×∈ , 0Re ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ . 

(1) If Re

csMA U≤ , then [ ) R Re s e s

cs csW uaA U A= ∨ ; if 
e s
R

csW
U A≤ , 

then ( ] R
e
R

csM la

e s
U

cs
A A= ∧ . 

(2) If { | not }notR Ra L a e e∨ ∈ ≥ ≥ , Re

csMA U≤  and  A  

is right arbitrary ∨ -distributive, then 

[ ) R Re s e s

cs csW uaA U A∨ = ∨ .                        (18) 

Moreover, if A  is non-decreasing in its first variable, 

then [ ) R Re s e s

cs csWA U A∨ = ∨ . 

3. Implications Satisfying the Order 

Property 

Recently, Su and Wang [19] have studied the constructions 

of implications and coimplications and Wang et al. [23-24] 

further investigated the constructions of implications and 

coimplications satisfying the neutrality principle on a 

complete lattice. This section is a continuation of [19, 23-24]. 

We will study the constructions of the upper and lower 

approximation implications which satisfy the order property. 

Definition 3.1 (Baczynski and Jayaram [26], Bustince et 

al. [27], De Baets and Fodor [28], Fodor and Roubens [1]).  

An implication I  on L  is a hybrid monotonous (with 

decreasing first and increasing second partial mappings) 

binary operation that satisfies the corner conditions 

1)1,1()0,0( == II  and 0)0,1( =I . 

An implication I  is said to satisfy the order property 

with respect to e  (w.r.t. e, for short) when x y≤  if and 
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only if ( , )I x y e≥  for any ,x y L∈ . 

Note that for any implication I  on L , due to the 

monotonicity, the absorption principle holds, i.e., 

(0, ) ( , 1) 1I x I x= =  for any x L∈ . 

For the sake of convenience, we introduce the following 

symbols: 

( )opeI L : the set of all implications which satisfy the order 

property w. r. t. e on L ; 

( )opeI L∧ : the set of all right arbitrary ∧ -distributive 

implications which satisfy the order property w. r. t. e on L . 

Clearly, ( )opeI L  and ( )opeI L∧  are all meet-semilattices.     

Definition 3.2. Let U  be a binary operation on L . Define 

,
L R

U U

L LI I L ×∈  as follows: 

( , ) { | ( , ) } , ,L

U
I x y z L U z x y x y L= ∨ ∈ ≤ ∀ ∈      (19) 

( , ) { | ( , ) } , .R

U
I x y z L U x z y x y L= ∨ ∈ ≤ ∀ ∈      (20) 

Here, L

U
I  and R

U
I  are, respectively, called the left and right 

residuum of the binary operation U . 

When U  is non-decreasing in each variable, it is easy to 

see that L

U
I  and R

U
I  are all decreasing in the first variable and 

increasing in the second one by Definition 3.2. 

Example 3.1. For some left and right semi-uninorms in 

Examples 2.1-2.2, a simple computation shows that 

0 if 1 and 0,

( , ) 1 if ,

{ | not } otherwise,

seL
csW

L

U

L

x y

I x y x y

a L a e

= =
= ≤
∨ ∈ ≥

 

1 if 0 or 1,

( , ) if 0 1,

0 otherwise,

eL
csM

L

LU

x y

I x y e x y

= =
= < ≤ <

  

0 if 1 and 0,

( , ) 1 if ,

{ | not } otherwise,

e sR
csW

R

U

R

x y

I x y x y

a L a e

= =
= ≤
∨ ∈ ≥

 

1 if 0 or 1,

( , ) if 0 1,

0 otherwise,

eR
csM

R

RU

x y

I x y e x y

= =
= < ≤ <

  

where x  and y  are elements of L . By the virtue of 

Theorem 8 in [20], we see that eL
csM

L

U
I  is the smallest element 

of both ( )LopeI L  and ( )LopeI L∧ . 

When 0Le ≠  and { | not }notL La L a e e∨ ∈ ≥ ≥ , it is easy 

to see that seL
csW

L

U
I  is the greatest element of ( )LopeI L .  

Moreover, assume that { | 0} 0a L a∧ ∈ ≠ ≠ . seL
csW

L

U
I  is the 

greatest element of ( )LopeI L∧ . 

Similar conclusions hold for ( )RopeI L  and ( )RopeI L∧ . 

It is easy to verify that if J ≠ Φ , then 

( ) ( ).L Lope ope

j j J jI I L j J I I L∈∈ ∀ ∈ ⇒ ∧ ∈      (21) 

When 0Le ≠  and { | not }notL La L a e e∨ ∈ ≥ ≥ , we see 

that ( )LopeI L  is also a complete lattice with the smallest 

element eL
csM

L

U
I  and greatest element seL

csW

L

U
I  by Example 3.1. 

Thus, for a binary operation A  on L , if there exists 

( )LopeI I L∈  such that A I≤ , then 

{ | , ( )}LopeI A I I I L∧ ≤ ∈               (22) 

is the smallest implication that is stronger than A  and 

satisfies the order property w. r. t. 
Le  on L . Here, we call it 

the upper approximation implication, which satisfies the order 

property w. r. t. 
Le , of A  and write as [ ) Lope

IA . Similarly, if 

there exists ( )LopeI I L∈  such that I A≤ , then 

{ | , ( )}LopeI I A I I L∨ ≤ ∈              (23) 

is the largest implication that is weaker than A  and satisfies 

the order property w. r. t. 
Le  on L . Here, we call it the lower 

approximation implication, which satisfies the order property 

w. r. t. 
Le , of A  and write as ( ] Lope

IA . 

Likewise, for a binary operation A  on L , we may 

introduce the following symbols: 

[ ) Rope

IA : the upper approximation implication, which 

satisfies the order property w. r. t. 
Re , of A ; 

( ] Rope

IA : the lower approximation implication, which 

satisfies the order property w. r. t. 
Re , of A ; 

[ ) Lope

IA ∧ ( [ ) Rope

IA ∧ ): the upper approximation right arbitrary 

∧ -distributive implication, which satisfies the order property 

w. r. t. 
Le  (

Re ), of A ; 

( ] Lope

IA ∧ ( ( ] Rope

IA ∧ ): the lower approximation right arbitrary 

∧ -distributive implication, which satisfies the order property 

w.r. t. 
Le  (

Re ), of A . 

Definition 3.3 (see Su and Wang [19]). Let A  be a binary 

operation on L . Define the upper approximation implicator 

uiA  and the lower approximation implicator 
liA  of A  as 

follows: 

( , ) { ( , ) | , } , ,uiA x y A u v u x v y x y L= ∨ ≥ ≤ ∀ ∈     (24) 

( , ) { ( , ) | , } , .liA x y A u v u x v y x y L= ∧ ≤ ≥ ∀ ∈     (25) 

Theorem 3.1 (see Su and Wang [19]). Let ,
L L

A B L
×∈ . 

Then the following statements hold: 

li uiA A A≤ ≤ .               (26) 

( )ui ui uiA BA B = ∨∨  and  
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( )li li liA BA B = ∧∧ .                      (27) 

uiA  and liA  are hybrid monotonous. 

If A  is are hybrid monotonous, then ui liA A A= = . 

Theorem 3.2. Let 
L L

A L
×∈ .  

(1) If A is right arbitrary ∨ -distributive, then uiA  is 

also right arbitrary ∨ -distributive, 

( ) , ( ) ,
ua la

R R R R

A li A A ui AI I I I= ≤             (28) 

( , ( ) ( , )) , .R

ua A liA x I x y y x y L≤ ∀ ∈          (29) 

(2) If A  is right arbitrary ∧ -distributive, then liA  is 

also right arbitrary ∧ -distributive. 

(3) If A is left arbitrary ∨ -distributive, then, 

( ) , ( ) ,
ua la

L L L L

A li A A ui AI I I I= ≤                    (30) 

(( ) ( , ), ) , .L

ua A liA I x y x y x y L≤ ∀ ∈           (31) 

Proof. We only prove that statement (1) holds. 

Assume that A  is a right arbitrary ∨ -distributive binary 

operation on L . Clearly, uaA  is also right arbitrary ∨
-distributive. By Definition 3.3, the monotonicity of A  and 

R

A
I , and the right residual principle, we have that 

( , ) { | ( , ) }

{ | { ( , ) | , } }

{ | { ( , ) | } }

{ | ( , ) }

{ | ( , ) }

{ | ( , ) }

( , ) , ,

ua

R

A ua

R

A

R

u x A

R

u x A

I x y z L A x z y

z L A u v u x v z y

z L A u z u x y

z L A u z y u x

z L z I u y u x

z L z I u y

I u y x y L

≤

≤

= ∨ ∈ ≤

= ∨ ∈ ∨ ≤ ≤ ≤
= ∨ ∈ ∨ ≤ ≤
= ∨ ∈ ≤ ∀ ≤
= ∨ ∈ ≤ ∀ ≤

= ∨ ∈ ≤ ∧

= ∧ ∀ ∈

     (32) 

( ) ( , ) { ( , ) | , }

{ ( , ) | } ( , ) , .

R R

A li A

R R

A u x A

I x y I u v u x v y

I u y u x I u y x y L≤

= ∧ ≤ ≥

= ∧ ≤ = ∧ ∀ ∈
    (33) 

Thus, ( )
ua

R R

A li AI I= . Similarly, we have that 

( ) ( , ) { ( , ) | } , ,R R

A ui A
I x y I u y u x x y L= ∨ ≥ ∀ ∈        (34) 

1 1

1 1

( , ) { ( , ) | , }

{ ( , ) | } , ,

la
A x z A u v u x v z

A u v u x x z L

= ∧ ≥ ≥
= ∧ ≥ ∀ ∈

          (35) 

1 1

( )( , )

{ | { ( , ) | } } , .

la

R

A
I x y

z L A u z u x y x y L= ∨ ∈ ∧ ≥ ≤ ∀ ∈
     (36) 

If u x≥ , let ( , )R

A
z I u y= , then 

1 1

( , ) ( , { | ( , ) })

{ ( , ) | ( , ) } ,

{ ( , ) | } ( , ) .

A u z A u c L A u c y

A u c A u c y y

A u z u x A u z y

= ∨ ∈ ≤

= ∨ ≤ ≤

∧ ≥ ≤ ≤

      (37) 

So, ( ) ( , ) ( )( , )
la

R R

A ui AI x y I x y≤  for any ,x y L∈ , i.e., 

( )
la

R R

A ui AI I≤ . Moreover, we know that 
uaA  is right arbitrary 

∨ -distributive and hence 

) ( , ) ( , )( , ( ) ( , )

( , { | ( , ) })

{ ( , ) | ( , ) } , .

ua

R R

ua A li ua A

ua ua

ua ua

x y x yA x I A x I

A x z L A x z y

A x z A x z y y x y L

=

= ∨ ∈ ≤
= ∨ ≤ ≤ ∀ ∈

    (38) 

The theorem is proved. 

Below, we give out the formulas for calculating the upper 

and lower approximation implications which satisfy the order 

property. 

Theorem 3.3. Suppose that 
L L

A L
×∈ , 0Le ≠  and 

{ | not }notL La L a e e∨ ∈ ≥ ≥ . 

(1) If seL
csW

L

U
A I≤ , then [ ) L

eL
csM

ope L

I uiU
A I A= ∨ ; 

if 
eL
csM

L

U
A I≥ , then ( ] L

seL
csW

ope L

I liU
A AI= ∧ . 

(2) If { | 0} 0a L a∧ ∈ ≠ ≠ , eL
csM

L

U
A I≥  and A  is right 

arbitrary ∧ -distributive, then 

( ] L
seL
csW

ope L

I liU
A AI

∧ = ∧ .               (39) 

Moreover, if A  is non-decreasing in its first variable, 

then ( ] L
seL
csW

ope L

I U
A AI

∧ = ∧ . 

Proof. Assume that { | not }notL La L a e e∨ ∈ ≥ ≥  and

0Le ≠ . Then eL
csM

L

U
I  and seL

csW

L

U
I  are, respectively, the smallest 

and greatest elements of ( )LopeI L by Example 3.1. 

(1) If seL
csW

L

U
A I≤ , let 1 eL

csM

L

uiU
I I A= ∨ , then 1A I≤  and 

1e seL L
csM csW

L L

U U
I I I≤ ≤ .                 (40) 

Thus, 1 1(0, 0) (1, 1) 1I I= =  and 1 (1, 0) 0I = . If x y≤ , 

then 1( , ) ( , )eL
csM

L

LU
I x y I x y e≥ ≥ ; if 1( , ) LI x y e≥ , then 

1( , ) ( , )seL
csW

L

LU
I x y I x y e≥ ≥  and so x y≤ , i.e., 1I  satisfies the 

order property w. r. t. Le . By Theorem 3.1(3) and the hybrid 

monotonicity of eL
csM

L

U
I , we know that 1I  is hybrid 

monotonous. So, 1
( )LopeI I L∈ . If A I≤  and ( )LopeI I L∈ , 

then ui uiA I I≤ =  and 1 seL
csM

L

uiU
I I A I= ∨ ≤ . Therefore, 

[ ) L
seL
csM

ope L

I uiU
A I A= ∨ .               (41) 
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If eL
csM

L

U
A I≥ , let 2 seL

csW

L

liU
I I A= ∧ , then 2I A≤ , 

2( ) ,e e e seL L L L
csM csM csM csW

L L L L

li liU U U U
A I I I I I≥ = ≤ ≤ .      (42) 

Thus, we can prove in an analogous way that 
2

( )LopeI I L∈  

and ( ] L
seL
csW

ope L

I liU
A I A= ∧ . 

(2) When { | 0} 0a L a∧ ∈ ≠ ≠ , eL
csM

L

U
I and seL

csW

L

U
I  are, 

respectively, the smallest and greatest elements of ( )LopeI L∧

by Example 3.1. Let 3 seL
csW

L

liU
I I A= ∧ . If eL

csM

L

U
A I≥ , then 

3
( )LopeI I L∈  by statement (1). Noting that A  is right 

arbitrary ∧ -distributive, we can see that liA  is also right 

arbitrary ∧ -distributive by Theorem 3.2(2). So, 3I  is right 

arbitrary ∧ -distributive, i.e., 3
( )LopeI I L∧∈ . By the proof of 

statement (1), we know that ( ] L
seL
csW

ope L

I U
A I A

∧ = ∧ . 

Moreover, if A  is non-decreasing in its first variable, then 

liA A=  by Theorem 3.1(4) and so 

( ] L
seL
csW

ope L

I U
A I A

∧ = ∧ .                (43) 

The theorem is proved. 

Analogous to Theorem 3.3, we have the following theorem. 

Theorem 3.4. Suppose that 
L L

A L
×∈ , 0Re ≠  and 

{ | not }notR Ra L a e e∨ ∈ ≥ ≥ . 

(1) If e sR
csW

R

U
A I≤ , then [ ) R

eR
csM

ope R

I uiU
A I A= ∨ ; 

if 
eR
csM

R

U
A I≥ , then ( ] R

e sR
csW

ope R

I liU
A AI= ∧ . 

(2) If { | 0} 0a L a∧ ∈ ≠ ≠ , 
eR
csM

R

U
A I≥  and A  is right 

arbitrary ∧ -distributive, then  

( ] R
e sR
csW

ope R

I liU
A AI

∧ = ∧ .               (44) 

Moreover, if A  is non-decreasing in its first variable, 

then ( ] R
e sR
csW

ope R

I U
A AI

∧ = ∧ . 

4. The Relations Between Strict 

(Right)-Conjunctive Left (Right) 

Semi-Uninorms and Implications 

In this section, we reveal the relationships between the 

upper approximation strict left (right)-conjunctive left (right) 

arbitrary ∨ -distributive left (right) semi-uninorms and lower 

approximation right arbitrary ∧ -distributive implications 

which satisfy the order property. 

Theorem 4.1. Suppose that 
L L

A L
×∈ , , 0L Re e ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ . 

(1) If { | not }notL La L a e e∨ ∈ ≥ ≥ , Le

csMA U≤  and A  is 

left arbitrary ∨ -distributive, then 

[ )
( ] L

seL
cs

opeL L

A I A
I I

∨

∧ = .             (45) 

(2) If { | not }notR Ra L a e e∨ ∈ ≥ ≥ , Re

csMA U≤  and  A  

is right arbitrary ∨ -distributive, then 

[ )
( ] R

e sR
cs

opeR R

A I A
I I

∨

∧ = .              (46) 

Proof. We only prove the statement (1) holds. 

Assume that Le

csM
A U≤  and A  is left arbitrary ∨

-distributive. Then it follows from Theorem 4.6 in [8] and 

Definition 3.2 that eL
csM

L L

AU
I I≤  and L

A
I  is right arbitrary ∧

-distributive. Thus, ( ] ( )L
seL
csW

opeL L L

A I A liU
I I I

∧ = ∧  by Theorem 

3.3(2). Moreover, it follows from Theorems 2.2(1) and 2.3(2) 

and the left residual principle that 

[ )
( , ) { | [ ) ( , ) }

{ | ( )( , ) }

{ | ( , ) ( , ) }

{ | ( , ) , ( , ) }

{ | ( , ), ( , ) }

{ | ( , ) (

L
seL

cs

L

L

L

seL ua
csW

seL ua
csW

seL

csA

se

csW ua

se

csW ua

se

csW ua

L L

AU

L L

AU

I x y z L A z x y

z L U A z x y

z L U z x A z x y

z L U z x y A z x y

z L z I x y z I x y

z L z I x y I x

∨
∨= ∨ ∈ ≤

= ∨ ∈ ∨ ≤

= ∨ ∈ ∨ ≤

= ∨ ∈ ≤ ≤

= ∨ ∈ ≤ ≤

= ∨ ∈ ≤ ∧ , ) }

( )( , ) , ,seL ua
csW

L L

AU

y

I I x y x y L= ∧ ∀ ∈

   (47) 

i.e., 
[ )

se seL L uacs csW

L L L

AA U
I I I

∨
= ∧ . By Theorem 3.2(3), we know that 

( )
ua

L L

A li AI I= . Therefore,  

[ )
( ] ( )L

se se eL L Lua cscsW csW

opeL L L L L L

A I A li A AU U
I I I I I I

∨

∧ = ∧ = ∧ = .     (48) 

The theorem is proved. 

Finally, we give out some conditions such that the lower 

approximation strict left (right)-conjunctive left (right) 

semi-uninorm of a binary operation and upper approximation 

implication, which satisfies the order property, of left (right) 

residuum of the binary operation satisfy the GMP rule. 

Theorem 4.2. Suppose that 
L L

A L
×∈ , , 0L Re e ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ . 

(1) If { | not }notL La L a e e∨ ∈ ≥ ≥ , Lse

csWU A≤  and A  

is non-decreasing in its second variable and left 

arbitrary ∨ -distributive and L

AI  and 
Le  are 

comparable (see [25]) when 0 1x y< ≤ < , then 

( ] Lse

csA  and [ ) LopeL

A II  satisfy the GMP rule in the form 

( ] ([ ) ( , ), ) ,L Lse opeL

cs A IA I x y x y x y L≤ ∀ ∈ .       (49) 

(2) If { | not }notR Ra L a e e∨ ∈ ≥ ≥ , Re s

csWU A≤  and A  

is non-decreasing in its first variable and right arbitrary 

∨ -distributive and R

AI  and 
Re  are comparable (see 

[25]) when 0 1x y< ≤ < , then ( ] Re s

csA  and [ ) RopeR

A II

satisfy the GMP rule in the form 
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( ] ( , [ ) ( , )) ,R Re s opeR

cs A IA x I x y y x y L≤ ∀ ∈ .       (50) 

Proof. We only prove the statement (1) holds. 

Assume that Lse

csW
U A≤ , A  is non-decreasing in its second 

variable and left arbitrary ∨ -distributive. Then, 
laA A= , 

seL
csW

L L

A U
I I≤ , L

A
I  is non-increasing in its first variable by 

Definition 3.2 and right arbitrary ∨ -distributive by Theorem 

4.6 in [8], ( )L L

A ui A
I I=  by Theorem 3.1(4), 

(( , ), ) ( { | ( , ) }, )

{ ( , ) | ( , ) } , .

L

A xA I y x A z L A z x y x

A z x A z x y y x y L

= ∨ ∈ ≤
= ∨ ≤ ≤ ∀ ∈

     (51) 

By the virtue of Theorem 2.3(2), we see that 

( ] ([ ) ( , ), )

([ ) ( , ), ) ([ ) ( , ), ).

L L

L L L

se opeL

cs A I

e ope opeL L

csM A I A I

A I x y x

U I x y x A I x y x= ∧
     (52) 

By Example 3.1 and Theorem 3.3(1), we know that 

[ ) ( , ) ( , ) ( , )

1 if 0 or 1,

( , ) if 0 1,

( , ) otherwise.

L
eL
csM

opeL L L

A I AU

L

L A

L

A

I x y I x y I x y

x y

e I x y x y

I x y

= ∨

= =
= ∨ < ≤ <



 

Thus, 

( ] ([ ) ( , ), )

(1, 0) (1, 0) if 0,

(1, ) (1, ) if 1,

( ( , ), ) ( ( , ), ) if 0 1,

( ( , ), ) ( ( , ), ) otherwise.

L L

L

L

L

L

se opeL

cs A I

e

csM

e

csM

e L L

csM L A L A

e L L

csM A A

A I x y x

U A x

U x A x y

U e I x y x A e I x y x x y

U I x y x A I x y x

 ∧ =
 ∧ ==  ∨ ∧ ∨ < ≤ <
 ∧

 

When 0 1x y< ≤ < , noting that ( , )L

AI x y  and Le  are 

comparable, we see that 

( ( , ), ) ( ( , ), )

( , ) if ( , ) ,

( ( , ), ) if ( , ) .

L

L

e L L

csM L A L A

e L

csM L A L

L L

A A L

U e I x y x A e I x y x

U e x x I x y e

A I x y x I x y e

∨ ∧ ∨

 = ≤≤  ≤

 

So, when 0 1x y< ≤ < , 

( ( , ), ) ( ( , ), )Le L L

csM L A L AU e I x y x A e I x y x y∨ ∧ ∨ ≤ .    (53) 

Therefore, ( ] ([ ) ( , ), )L Lse opeL

cs A IA I x y x y≤  for all ,x y L∈ , 

i.e., ( ] Lse

csA  and [ ) LopeL

A II  satisfy the GMP rule. 

The theorem is proved. 

5. Conclusions and Future Works 

Constructing fuzzy connectives is an interesting topic. 

Recently, Su et al. [16] studied the constructions of left and 

right semi-uninorms, and Wang et al. [19-20, 22, 24] 

investigated the constructions of implications and 

coimplications on a complete lattice. In this paper, motivated 

by these works, we give out the formulas for calculating the 

upper and lower approximation strict left (right)-conjunctive 

left (right) semi-uninorms of a binary operation; lay bare the 

formulas for calculating the upper and lower approximation 

implications, which satisfy the order property, of a binary 

operation; reveal the relationships between the upper 

approximation strict left (right)-conjunctive left (right) 

arbitrary ∨ -distributive left (right) semi-uninorms and lower 

approximation right arbitrary ∧ -distributive implications 

which satisfy the order property. 

In a forthcoming paper, we will further investigate the 

constructions of left (right) semi-uninorms and 

coimplications on a complete lattice. 
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