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Abstract: This paper considers a distributed constrained optimization problem, where the objective function is the sum of 

local objective functions of distributed nodes in a network. The estimate of each agent is restricted to different convex sets. To 

solve this optimization problem which is not necessarily smooth, we study a novel distributed projected subgradient algorithm 

for multi-agent optimization with nonidentical constraint sets and switching topologies. The algorithm shows that each agent 

minimizes its own objective function while communicating information locally with other agents over a network with time-

varying topologies but satisfying a standard connectivity property. Under the assumption that the network topology is weight-

balanced, the novel distributed subgradient algorithm we proposed is proven to be convergent. Particularly, we suppose the 

step-size is various, which is different from previous work on multi-agent optimization that makes worst-case assumption with 

constant step-size. 
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1. Introduction 

In recent years, multi-agent systems and distributed 

algorithms have received considerable research attentions 

due to its wide applications in many engineering systems and 

large-scale networks [1-28], including resource allocation in 

computer network [16-18], distributed estimation in sensor 

networks [19], distributed finite-time optimal rendezvous 

problem [21], and distributed demand response control 

problem in smart grid [22]. In many networked systems (see 

e.g. [22-28]), multi-agent are enforced to solve a distributed 

convex optimization problem, where the global objective 

function is the sum of local objective functions, each of them  

can not be known or shared by other agents. 

Distributed optimization of a sum of convex functions has 

received a surge of interests in recent years. Nedić and 

Ozdaglar [1] presented an analysis of the consensus-based 

subgradient method for solving the distributed convex 

optimization problem. Projection-based distributed algorithm 

was developed in Nedić et al. [3] for distributed optimization, 

where each agent was constrained to individual closed 

convex set and gave corresponding convergence analysis on 

identical closed convex sets and on uniform weight with non-

identical. Further distributed algorithm for set constrained 

optimization was investigated in Bianchi and Jakubowicz [7] 

and Lou et al. [10]. To figure out distributed optimization 

problems with asynchronous stepsizes or inequality–equality 

constraints, Distributed Lagrangian primal-dual subgradient 

algorithm and penalty primal-dual subgradient algorithm 

were shown in Zhu et al. [6], Towfic and Sayed [12], both of 

them were designed for function constrained problems. 

Meanwhile, dual decomposition was applied to separable 

problems with affine constraints in [4, 9]. Recent works [15-

18] have coordinately put their sights on inequality-equality 

constraints. Zhu et al. [22] proposed a distributed Lagrangian 

primal–dual subgradient method which is based on the 



 Applied and Computational Mathematics 2016; 5(3): 150-159 151 

 

characterization of the primal–dual optimal solutions as the 

saddle points of the Lagrangian function associated with the 

problem. Yuan et al. [25] studied a variant of the distributed 

primal–dual subgradient method, where the multi-step 

consensus algorithm was employed to simplify the 

implementation and convergence analysis of the method. To 

solve the multi-agent optimization problem with more 

general inequality constraints that couple all the agents’ 

optimization variables, Chang et al. [27] proposed a novel 

distributed primal–dual perturbed subgradient method and 

established its convergence. The implementation of the 

aforementioned methods in general involved projection-step 

onto some primal and dual constraint sets, respectively. 

Inspired by the works of [1, 3, 33], a multi-agent 

unconstrained convex optimization problem through a novel 

combination of average consensus algorithms with 

subgradient methods was solved in Nedić and Ozdaglar [1]. 

Then, Nedić et al. [3] assumed that each agent is constrained 

to remain in a closed convex set and gave corresponding 

convergence analysis on identical closed convex sets and on 

uniform weight with non-identical closed convex sets. 

Furthermore, paper [22] solved a multi-agent convex 

optimization problem where the agents were subjected to a 

global inequality constraint, a global equality constraint and a 

global constraint set. In order to figure out these constraints, 

Zhu et al. [22] presented two different distributed projection 

algorithms with three assumptions that the network 

topologies were strongly connected among each time interval 

of a certain bounded length and the adjacency matrices were 

doubly stochastic and non-degeneracy. 

Contributions: Inspired by the previous studies, this paper 

proposes a novel distributed subgradient algorithm for multi-

agent convex optimization with local constraint sets. 

Previous work did not perform well on the application of the 

distributed algorithms in multi-agent network, for example, 

they may regarded the edge weight matrices of graphs as 

doubly stochastic (i.e., 1 ( ) 1N

j ija k= =∑  for all i V∈  and 

0k ≥ , and 1 ( ) 1N

i ija k= =∑  for all j V∈  and 0k ≥ ). 

However, our methods do not assume that the adjacency 

matrices are doubly stochastic. We only require the network 

is weight-balanced, which makes the algorithm more 

practical. More precisely, the contribution of this paper is 

mainly in two aspects. Firstly, based on the conditions that 

each agent is restricted to different convex sets and the 

digraph is weight-balanced, we introduce a novel distributed 

projected subgradient algorithm under the case of various 

step-sizes. Secondly, we show the convergence of the 

algorithm and prove that it can achieve the optimal point of 

the sum of agents’ local objective functions while satisfying 

local constraint sets. 

The organization of the remaining part is given as follows. 

Some basic preliminaries and concepts are given in section 2. 

Then, in Section 3, we present our problem formulation and 

some distributed subgradient algorithm preliminaries. We 

then introduce the distributed projection subgradient 

algorithm with some supporting lemmas and continue with a 

convergence analysis of the algorithm in Section 4. 

Furthermore, the properties of the algorithm are explored by 

using a numerical example in Section 5. Finally, we conclude 

the paper with a discussion and future work in Section 6. 

2. Preliminaries and Concepts 

In this section, we review some useful related concepts in 

algebraic graph theory, convex analysis, properties of the 

projection operation on a closed convex set and introduce 

some useful lemmas (referring to [28, 29, 31]). 

2.1. Algebraic Graph Theory 

We use a graph to describe the information exchange 

between the agents and that leader. The interaction topology 

of information exchange between N  agents is commonly 

depicted by a weighted directed graph { , , }G V E A= , where 

1 2{ , ,..., }NV v v v=  is the set of vertices representing N  

agents, and E V V⊆ ×  is the set of edge of the graph. It is 

assumed that the graph is simple, i.e., there are no repeated 

edges or self-loops. The weighted adjacency matrix of G is 

denoted by [ ] N N

ijA a R ×= ∈  with 0ija >  if ( , )j iv v E∈  and 

0ija =  otherwise. Note that the diagonal elements 0iia =  

and A  is generally an asymmetric matrix. A directed edge 

( , )ji j ie v v=  implies that node j  can reach node i  or node 

i  can receive information from node j . If an edge 

( , )j i E∈ , then node j  is called a neighbor of node i  and 

0ija > . The neighbor node set of node i  is denoted by 
iN , 

while we indicate with | |iN  the number of neighbors of 

node i . The Laplacian matrix ( )ij N NL l ×=  associated with 

the adjacency matrix A  is defined by ,ij ijl a i j= − ≠ ; 

1,

N

ii ijj j i
l a

= ≠
=∑ , which ensures that 

1
0

N

ijj
l

=
=∑ . The in-

degree and out-degree of node i  can be, respectively, define 

by the Laplacian matrix as: in 1,
( )

N

i ij iij j i
d v l l

= ≠
= − =∑  and 

out 1,
( )

N

i jij j i
d v l

= ≠
= −∑ . A directed path from node j  to node 

i  is a sequence of edges 
1 1 2( , ), ( , ),..., ( , )mj i i i i i  in the directed 

graph G  with distinct nodes , 1, 2,...,ki k m= . A directed 

graph is strongly connected if for any two distinct nodes j  

and i  in the set V , there always exists a directed path from 

node j  to node i . A graph is called an in-degrees (or out-

degrees) balanced graph if the in-degrees (or out-degrees) of 

all nodes in the directed graph are equal. A directed graph 

with N  nodes is called a directed tree if it contains 1N −  

edges and there exists a root node with directed paths to 

every other node. A directed spanning tree of a directed 

graph is a directed tree that contains all network nodes. 

2.2. Basic Notations and Concepts 

In this paper, we do not assume the function 
[ ]if  at a point 

is differentiable and the subgradient plays the role of the 
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gradient. 

Definition 1: For a given convex function :
n

F R R→  and 

a point n
x R∈ɶ , a subgradient of the function F  at xɶ  is a 

vector ( ) nDF x R∈ɶ  such that the following subgradient 

inequality holds for any n
x R∈ : 

( ) ( ) ( ) ( )DF x x x F x F xΤ − ≤ −ɶ ɶ ɶ
 

Definition 2: The set of all subgradients of a convex 

function F  at n
x R∈  is called the subdifferential of F  at x , 

and is denoted by ( )F x∂ : 

T( ) { ( ) | ( ) ( ) ( ( )) ( ), }n nF x DF x R F y F x DF x y x y R∂ = ∈ ≥ + − ∀ ∈
 

We use [ ]XP x  to denote the projection of a vector x  on a 

closed convex set X , i.e. 

[ ] arg min || ||X
x X

P x x x
∈

= −
 

In the subsequent development, the properties of the 

projection operation on a closed convex set play an important 

role. In particular, we use the projection inequality, i.e., for 

any vector x  

T( [ ] ) ( [ ]) 0X XP x x y P x− − ≥  for all y X∈        (1) 

We also use the standard non-expansiveness property, i.e. 

for any x  and y  

|| [ ] [ ] || || ||
X X

P x P y x y− ≤ −
                 (2) 

In addition, we use the properties given in the following 

lemma. 

Lemma 2.1: Let X  be a nonempty closed convex set in 

n
R . Then, we have for any n

x R∈  

(a) 
T 2( [ ] ) ( [ ]) || [ ] ||X X XP x x y P x P x x− − ≤ − − , for all 

y X∈ . 

(b) 
2 2 2|| [ ] || || || || [ ] ||X XP x y x y P x x− ≤ − − − , for all 

y X∈ . 

Assumption 2.1 (Interior Point): Let [ ]i nX R⊆ , 1, ...,i n= , 

be nonempty closed convex sets and 
[ ]

1

N i

iX X==∩  be their 

intersection. There is a relative interior point x  of X , i.e., 

there exists a scalar 0δ >  such that { ||| || }x x x Xδ− ≤ ⊂ . 

Throughout this paper, the following notations are used. 
n

R  denotes the set of all n -dimensional real vector spaces. 

Given a set S , we denote co( )S  by its convex hull. We write 
T

x  or T
A  to denote the transpose of a vector x  or a matrix 

A . Denote 
T1 (1,...,1) m

m R= ∈  and 
T0 (0,...,0) m

m R= ∈ . For 

a vector n
x R∈ , we denote 

T

1| | (| |,...,| |)nx x x= , while || ||x

is the standard Euclidean norm in the Euclidean space. In this 

paper, the quantities (e.g., functions, scalars and sets) 

associated with agent i  will be indexed by the superscript 

[ ]i . 

3. Problem Formulation 

Distributed Constrained Optimization Problem 

In this paper, we are interested in solving the distributed 

constrained convex optimization problem over a multi-agent 

network. Specifically, we consider a network of agents 

labeled by {1, 2,..., }V N=  which endowed with a local 

convex objective function and a local constraint set. The 

network objective function is given by 

[ ] [ ]

11
min ( ) ( ), s.t .

n

N i N i

iix R
f x f x x X X==∈

= ∈ =∑ ∩                                               (3) 

where 
[ ] :i nf R R→  is the convex objective function of 

agent i , 
[ ]

1

N i

iX X==∩ is the intersection of local constraint 

sets, [ ]i nX R⊆  is the compact and convex constraint set of 

agent i , and x  is a global decision vector. Assume that 
[ ]if  

and [ ]i
X  are only known by agent i , and probably different. 

Let 
*p  denote the optimal value of (3) and let *

x  denote an 

optimizer of (3). We assume that the optimal value 
*p  is 

finite. We also denote the optimal solution set by *
X , i.e., 

* [ ] *

1
{ | ( ) }

nn i

i
X x R f x p

=
= ∈ =∑ . We will assume that in 

general f  is non-differentiable and there exists at least one 

interior x  of X , i.e. x X∈  (3) has finite optimal solution. 

Specially, the following assumptions and lemmas are needed 

in the analysis of distributed optimization algorithm 

throughout this paper. 

Assumption 3.1 (Weight-balanced): ( )G k  is weight-

balanced if 
out in( ) ( )d v d v= , for all v V∈ . 

Assumption 3.2 (Periodical Strong Connectivity): There is 

a positive integer B  such that, for all 
0 0k ≥ , the directed 

graph 
1

0 0( , ( ))B

kV E k k−
= +∪  is strongly connected. 

Assumption 3.3 (Subgradient Boundedness): There exist a 

closed convex closure Y  such that [ ]i
X Y⊂  for all i . The 

subgradient set of each 
[ ]if  over Y  is bounded, i.e., there 

exists a constant 0C >  for all 1,...,i N=  such that 
[ ]|| ( ) ||i

xD k C≤ , 
[ ] [ ]( ) ( ),i i

xD k f x x Y∀ ∈∂ ∈ . 

Lemma 3.1 (Dynamic Average Consensus Algorithm) 

[30]: The following is a vector version of the first-order 

dynamic average consensus algorithm with 
[ ] [ ]( ), ( )i i nx k k Rξ ∈ : 

[ ] [ ] [ ]

1
( 1) ( ) ( ) ( )

Ni j i

ijj
x k w k x k kξ

=
+ = +∑

 

Denote 
[ ] [ ]

( ) max ( ) min ( )
i i

i V i Vk k kξ ξ ξ∈ ∈∆ = −
ℓ ℓ ℓ  for 

1 n≤ ≤ℓ . The sequences of ( ) [ ( )]ijW k w k=  satisfy 
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1
( ) 1

N

ijj
w k

=
=∑  and 

1
( ) 1

N

iji
w k

=
=∑  and periodical strong 

connectivity, i.e., there exists a constant 0ω >  such that 

( )iiw k ω≥ , and ( )ijw k , for i j≠ , satisfies 

( ) {0} [ ,1]ijw k ω∈ ∪ , for all 0k ≥ . Assume that 

lim ( ) 0
k

kξ
→+∞

∆ =
ℓ  for all 1 n≤ ≤ℓ  and all 0k ≥ . Then 

[ ] [ ]lim || ( ) ( ) || 0
i j

k
x k x k

→+∞
− =  for all ,i j V∈ . 

Proof: One can finish the proof by following similar 

arguments of Theorem 3.1 in [30]. 

Consider the following distributed projected subgradient 

algorithm proposed in [3]: Suppose nZ R⊆  is a closed and 

convex set. Let 
[ ] [ ] [ ] [ ]

( 1) [ ( ) ( ) ( )]
i i i i

Z xx k P v k k d kα+ = − . 

Denote 
[ ] [ ] [ ] [ ] [ ]

( ) [ ( ) ( ) ( )] ( )
i i i i i

Z x xe k P v k k d k v kα= − − . Denote 

the average estimate 
[ ]

1

1
ˆ( ) ( )

N i

i
x k x k

N =
= ∑ . The following is 

a slight modification of Lemma 8 and its proof in [3]. 

Lemma 3.2: Let the weighted-balanced Assumption 3.1, 

and the periodic strong connectivity Assumption 3.2 hold. 

Suppose 
[ ]

{ ( )}
i

d k  is uniformly bounded for each i V∈ , and 

2

0
( )

k
kα+∞

=
< +∞∑  for any i V∈ , then there exist 0γ >  and 

(0,1)β ∈  such that 

[ ] [ ] [ ] [ ] [ ]1 1

0 0
ˆ|| ( ) ( ) || { ( ) || ( ) || || ( ) ( ) ( ) ||} || (0) ||

k Ni i i i ik k

i
x k x k N d e d N xτ

τ
γ β α τ τ τ α τ τ γβ− − −

= =
− ≤ + + +∑ ∑

 

Thus we have 
[ ]2

0
ˆ( ) max || ( ) ( ) ||

i

i Vk
k x k x kα+∞

∈=
− < +∞∑ . 

4. Distributed Projected Subgradient 

Algorithm 

In this section, we present a novel distributed projected 

subgradient algorithm to solve the optimization problem (3), 

followed by its convergence properties. 

4.1. Distributed Projected Subgradient Algorithm 

Consider a set {1,..., }V n=  of agents. Each agent chooses 

any initial state 
[ ]

(0)
i

X X∈ , and 
[ ] [ ] [ ]

(1) ( (0))
i i i

y Nf X= . 

Formally, each agent i  at any time 0k ≥  updates according 

to the following rule: 

[ ] [ ] [ ] [ ]

( )
( ) ( ) ( )( ( ) ( ))

i

i i j i

x ijj N k
v k x k h a k x k x k

∈
= + −∑

 

[ ] [ ] [ ] [ ]

( )
( ) ( ) ( )( ( ) ( ))

i

i i j i

y ijj N k
v k y k h a k y k y k

∈
= + −∑

 

and generates 
[ ]

( 1)
i

x k + , 
[ ]

( 1)
i

y k +  based on the following 

iterative procedure: 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ]

[ ]( 1) [ ( ) ( ) ( )]

( 1) ( ) ( ( ( )) ( ( 1)))

i

i i ii

x xX

i i i i i i

y

x k P v k k D k

y k v k N f x k f x k

α+ = −

+ = + − −
  (4) 

where the positive scalars 
[ ]( ) 0i kα >  are step-sizes, the 

scalars ( )ija k  are non-negative weights, [ ]i
X

P  is the projector 

onto the set [ ]i
X , and 0h >  is the networked control gain. 

The vector 
[ ]

( )
i

xD k  is a subgradient of the agent i  objective 

function 
[ ]( )if x  at 

[ ]( )i

xx v k= . Note that we will use the 

nature shorthand 
[ ]

( )
i

xD k  for 
[ ] [ ]( ( ))
i i

xDf v k . 

Remark 4.1: Since 
[ ] [ ] [ ] [ ]

( ) ( ) ( )( ( ) ( ))
i

i i j i

x ijj N
v k x k h a k x k x k

∈
= + −∑ , it follows 

that 

[ ] [ ] [ ]

1
( ) ( ) ( ) ( )

Ni i j

x ijj
v k x k h l k x k

=
= − ∑

 

where ( ) [ ( )]ijL k l k=  is the Laplacian matrix such that 

T T1 0 ,1 0N N N NL L= = .  

Proof: Modifying the second term on the right-hand side in 

the above formula, we then have 

[ ] [ ] [ ] [ ]

1,

[ ] [ ]

1,

( ) ( ) ( ) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

Ni i i j

x ii ijj j i

Ni j

ii ijj j i

v k x k hl k x k h l k x k

hl k x k h l k x k

= ≠

= ≠

= − −

= − −

∑

∑
 

Let ( ) (1 ( )), ( ) ( )ii ii ij ijw k hl k w k hl k= − = − , one has 

[ ] [ ]

1
( ) ( ) ( )

Ni j

x ijj
v k w k x k

=
=∑

 

Since graph ( )G k  is balanced, we then have 
1

( ) 1
N

ijj
w k

=
=∑  

and 
1

( ) 1
N

iji
w k

=
=∑  hold if h  satisfies 1 ( ) 0iihl k− > . 

Similarly, we obtain [ ] [ ]

1
( ) ( ) ( )

Ni j

y ijj
v k w k y k

=
=∑ . 

Assumption 4.1 (Step-size assumption): The step-sizes 

sequences 
[ ]{ ( )}i kα , i V∈ , satisfy 

[ ]

0
( )

i

k
kα+∞

=
= +∞∑  and 

[ ] 2

0
( ( ))

i

k
kα+∞

=
< +∞∑ . 

In the following, we study the convergence behavior of the 

subgradient algorithm, where the optimal solution and the 

optimal value are asymptotically agreed upon. 

Theorem 4.1 (Convergence properties of the distributed 

projected subgradient algorithm): Consider the problem (3). 

Let the weight-balanced Assumption 3.1 and the periodic 

strong connectivity Assumption 3.2 hold. Consider the 

sequences of 
[ ]

{ ( )}
i

x k  and 
[ ]

{ ( )}
i

y k  of the distributed 

projection subgradient algorithm where the step-sizes 

sequences
[ ]{ ( )}i kα  satisfy the step-size Assumption 4.1. 

Then there exists a optimal solution *x X∈ɶ  such that 
[ ]

lim || ( ) || 0
i

k
x k x

→+∞
− =ɶ  for all i V∈ . Furthermore, we have 
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[ ] *lim || ( ) || 0
i

k
y k p

→+∞
− =  for all i V∈ . 

Remark 4.2: Our distributed subgradient algorithm is an 

extension of the distributed projected subgradient algorithm 

in [3] to solve multi-agent convex optimization problems 

with local constraints set in a more general way. We do not 

divide a closed convex set into on identical closed convex 

sets or on uniform weight with non-identical closed convex 

sets to analysis the corresponding convergence. Furthermore, 

unlike other subgradient algorithm, e.g., [33-36], our 

distributed projected subgradient algorithm consider the 

condition of various step-sizes, this will totally make the 

application more extensive. 

4.2. Convergence Analysis 

In the following, we will prove convergence property of 

the distributed projected subgradient algorithm. First, we 

rewrite our algorithm into the following form: 

[ ] [ ] [ ]
( 1) ( ) ( )

i i i

x xx k v k e k+ = +
 

[ ] [ ] [ ]
( 1) ( ) ( )

i i i

y
y k v k u k+ = +  

where 
[ ]

( )
i

xe k  is projection errors described by 

[ ] [ ] [ ] [ ]
[ ]

[ ]( ) [ ( ) ( ) ( )] ( )i

i i i ii

x x x xX
e k P v k k D k v kα= − −  and 

[ ] [ ] [ ] [ ][ ]( ) ( ( ( )) ( ( 1)))
i i i iiu k N f x k f x k= − −  is the local input 

which allows agent i  to track the variation of the local 

objective function 
[ ]i

f . In this way, the update rule of each 

estimate is resolved in two parts: a convex sum to fuse the 

information of each agent with those of its neighbors, plus 

some local error or input. With this decomposition, all the 

update laws are put into the same form as the dynamic 

average consensus algorithm e.g., [30]. This observation 

allows us to divide the analysis of the distributed projected 

subgradient algorithm into two steps. Firstly, we show all the 

estimates asymptotically achieve consensus by utilizing the 

property that the local errors and inputs are diminishing. 

Secondly, we further show that the consensus vectors 

coincide with optimal solutions and the optimal value. 

Lemma 4.1 (Convergence properties of weighted 

sequences): Let 0K ≥ . Consider the sequences { ( )}kδ  

defined by { ( )}kδ =  

1

1

( ) ( )

( )

k

k

k

k

α ρ

α

−

=
−

=

∑

∑

ℓ

ℓ

ℓ ℓ

ℓ
, where 1k K≥ + , 

( ) 0kα >  and ( )
k K

kα+∞

=
= +∞∑ . 

(a) If lim ( )
k

kρ
→+∞

= +∞ , then lim ( )
k

kδ
→+∞

= +∞ . 

(b) If  
*lim ( )

k
kρ ρ

→+∞
= , then 

*lim ( )
k

kδ ρ
→+∞

= . 

The proof of Lemma 4.1 can be referred to Lemma 5.1 in 

[22]. 

The following lemmas provide a basic iteration relation 

applied in the convergence proof for the distributed projected 

subgradient algorithm. 

Lemma 4.2 (Basic iteration relation): Let the weighted-

balanced Assumption 3.1, and the periodic strong 

connectivity Assumption 3.2 hold. For any x X∈  and all 

0k ≥ , the following estimate holds: 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] 2 2 2 [ ] [ ] 2

1 1 1

[ ] 2

1 1

|| ( ) ( ) ( ( )) || || ( ( ) ) || ( ( )) || ( ( )) ||

|| ( 1) || 2 ( )( ( ) ( ( )))

N N Ni i ii i i i i

x x x x xi i i

N N i i i ii

xi i

e k k D v k x k x k D v k

x k x k f x f v k

α α

α
= = =

= =

+ ≤ − +

− + − + −

∑ ∑ ∑

∑ ∑
        (5) 

Proof: By Lemma 2.1, we can deduce that 2 2 2|| [ ] || || || || [ ] ||Z ZP z z z y P z y− ≤ − − − . Let 

[ ] [ ][ ] [ ]

1, ( ) ( ) ( ),
i ii N i

x x iZ X z v k k D k y x X Xα == = − = ∈ =∩ . For any x X∈  and all 0k ≥ , the following estimate holds: 

[ ]

[ ] [ ] [ ] [ ] 2 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 2

[ ] [ ] [ ] [ ] 2 [ ] 2

[ ] 2 [

1

|| ( ) ( ) ( ( )) || || [ ( ) ( ) ( ( ))] ( ( ) ( ) ( ( ))) ||

|| ( ) ( ) ( ( )) || || ( 1) ||

|| ( ) ( ) || (

i

i i i i i i i i i i i i

x x x x x x x x xX

i i i i i

x x x

N j

ijj

e k k D v k P v k k D v k v k k D v k

v k k D v k x x k x

w k x k x

α α α

α

α
=

+ = − − −

≤ − − − + −

= − +∑
] 2 [ ] [ ] 2

[ ] [ ] [ ] T [ ] [ ] 2

1

( )) || ( ( )) ||

2 ( )[ ( ( ))] ( ( ) ( ) ) || ( 1) ||

i i i

x x

Ni i i j i

x x ijj

k D v k

k D v k w k x k x x k xα
=

− − − + −∑
 

Summing the preceding relation with 1, ..,i N= , and using 
1 1

( ) 1, ( ) 1
N N

ij ijj i
w k w k

= =
= =∑ ∑ , we can derive 

[ ] [ ] [ ] [ ] 2

1

[ ] 2 [ ] 2 [ ] [ ] 2

1 1 1

[ ] [ ] [ ] T [ ] [ ] 2

1 1 1

[ ] 2

|| ( ) ( ) ( ( )) ||

|| ( ) ( ) || ( ( )) || ( ( )) ||

2 ( )[ ( ( ))] ( ( ) ( ) ) || ( 1) ||

|| ( ) ||

N i i i i

x x xi

N N Nj i i i

ij x xi j i

N N Ni i i j i

x x iji j i

i

i

e k k D v k

w k x k x k D v k

k D v k w k x k x x k x

x k x

α

α

α

=

= = =

= = =

+

≤ − +

− − − + −

≤ −

∑

∑ ∑ ∑

∑ ∑ ∑
[ ] 2 [ ] [ ] 2 [ ] 2

1 1 1

[ ] [ ] [ ] T [ ]

1 1

( ( )) || ( ( )) || || ( 1) ||

2 ( )[ ( ( ))] ( ( ) ( ) )

N N Ni i i i

x xi i

N Ni i i j

x x iji j

k D v k x k x

k D v k w k x k x

α

α
= = =

= =

+ − + −

− −

∑ ∑ ∑

∑ ∑
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One can show (5) by substituting the following 

subgradient inequality into above formula: 

[ ] [ ] [ ] [ ] [ ]
( ( )) ( ( ) ) ( ( )) ( )

i i i i i

x x xD k v k x f v k f xΤ − ≤ −
 

The following lemma shows that the consensus is 

asymptotically reached. 

Lemma 4.3 (Achieving consensus): Let the weight-

balanced Assumption 3.1, the periodic strong connectivity 

Assumption 3.2 hold. Consider that the sequences of 

[ ]{ ( )}ix k  and 
[ ]{ ( )}iy k  of the distributed projected 

subgradient algorithm with the step-size sequences 
[ ]{ ( )}i kα  

satisfy the step-sizes Assumption 4.1. Then there exists 
* [ ]

1

N i

ix X X=∈ =∩  such that 
[ ] *lim || ( ) || 0
i

k
x k x

→+∞
− =  for all 

i V∈ , and 
[ ] [ ]lim || ( ) ( ) || 0
i j

k
y k y k

→+∞
− =  for all ,i j V∈ . 

Proof: From Lemma 4.2, it follows that 

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] 2 [ ] 2 [ ] 2

1 1

2 2

1

[ ]

1

|| ( ) ( ) ( ( )) || ( ( )) || ( ( )) ||

{|| ( ) || || ( 1) || }

2 ( )( ( ( )) ( ))

N Ni i ii i i i

x x x x xi i

N i i

i

N i i ii

xi

e k k D v k k D v k

x k x x k x

k f v k f x

α α

α

= =

=

=

+ ≤

+ − − + −

− −

∑ ∑

∑

∑
 

Due to 
[ ] [ ][ ] [ ] 2

1

0 || ( ) ( ) ( ( )) ||
N

i ii i

x x x

i

e k k D v kα
=

≤ +∑ , we can show that 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

2 [ ] 2 [ ] 2 2

1 1 1

[ ]

1

[ ] 2 [ ] 2 2

1 1

[ ]

1

|| ( 1) || ( ( )) || ( ( )) || || ( ) ||

|| 2 ( )( ( ( )) ( )) ||

( ( )) || ( ( )) || || ( ) ||

2 ( )(|| ( ( )) || || ( ) ||)

N N Ni i ii i

x xi i i

N i i ii

xi

N Ni ii i

x xi i

N i i ii

xi

x k x k D v k x k x

k f v k f x

k D v k x k x

k f v k f x

α

α

α

α

= = =

=

= =

=

+ − ≤ + −

+ −

≤ + −

+ +

∑ ∑ ∑

∑

∑ ∑

∑  

Then it follows from subgradient boundedness Assumption 3.3 that 
[ ] [ ]|| ( ( )) ||
i i

x xD v k L≤ . We have 

[ ] [ ] [ ]

[ ] 2 [ ] 2 [ ] 2 2

1 1 1

[ ]

1

|| ( 1) || || ( ) || ( ( ))

2 ( )(|| ( ( )) || || ( ) ||)

N N Ni i i

i i i

N i i ii

xi

x k x x k x k L

k f v k f x

α

α
= = =

=

+ − ≤ − +

+ +

∑ ∑ ∑

∑
                                         (6) 

Noticing that 
[ ] [ ]

1( ) co( )i N i

x iv k X=∈ ∪  and 
[ ]

1

N i

ix X X=∈ =∩  

are bounded. Since [ ]lim ( ) 0i

k
kα

→+∞
=  and 

[ ]if  is continuous, 

then 
[ ] [ ] [ ] [ ]

1
lim 2 ( )(|| ( ( )) || || ( ) ||) 0

N i i i i

xik
k f v k f xα

=→+∞
+ =∑  and 

[ ] 2 2

1
lim ( ( )) 0

N i

ik
k Lα

=→+∞
=∑ . Taking limits on both sides of (6), 

one can see that for any x X∈ , 

[ ] 2 [ ] 2

1 1
lim sup || ( 1) || lim inf || ( ) ||

N Ni i

i ik k
x k x x k x

= =→+∞ →+∞
+ − ≤ −∑ ∑

 

and thus 
[ ] 2

1
lim || ( ) ||

N i

ik
x k x

=→+∞
−∑  exists for any x X∈ .  

For another, taking the limits of both sides of (4) as 

k → +∞ , we have 

[ ] [ ][ ] [ ] 2

1
lim || ( ) ( ) ( ( )) || 0

N i ii i

x x xik
e k k D v kα

=→+∞
+ =∑  and therefore we 

deduce that 
[ ]lim || ( ) || 0
i

x
k

e k
→+∞

=  for all i V∈ . Follows from 

Lemma 3.1 that 
[ ] [ ]lim || ( ) ( ) || 0
i j

k
x k x k

→+∞
− =  for all ,i j V∈ . 

Combining this with the property that 

[ ] 2

1
lim || ( ) ||

N i

ik
x k x

=→+∞
−∑  exists for any x X∈ , and we deduce 

that there exists * n
x R∈  such that 

[ ] *lim || ( ) || 0
i

k
x k x

→+∞
− =  for 

all i V∈ . Since 
[ ] [ ]( )i ix k X∈  and [ ]i

X  is closed, it implies 

that * [ ]i
x X∈  for all i V∈  and thus *

x X∈ . Since 
[ ] *lim || ( ) || 0
i

k
x k x

→+∞
− =  and 

[ ]if  is continuous, then 

[ ]lim || ( ) || 0i

k
u k

→+∞
= . It follows from Lemma 3.1 that 

[ ] [ ]lim || ( ) ( ) || 0
i j

k
y k y k

→+∞
− =  hold for all ,i j V∈ . 

From Lemma 4.3, we can say that the sequences 
[ ]

{ ( )}
i

x k  

of the distributed projected algorithm asymptotically agree on 

to some point in X . We further denote by the average of 

agents’ state estimates [ ]

1

1
ˆ( ) ( )

N i

i
x k x k

N =
= ∑ . The following 

lemma illustrates that *
x X∈  is the optimal solution. 

Lemma 4.4 (Optimal Solution): *
x X∈  is the optimal 

solution of the objective function 
[ ]if . 

Proof: Denoting the maximum deviation 

[ ] [ ]
,( ) max || ( ) ( ) ||

j i

x i j Vk x k x k∈∆ = −  and 
[ ]

1

1
ˆ( ) ( )

N i

i
x k x k

N =
= ∑ , 

then 
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[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

1 1

1
ˆ|| ( ) ( ) || || ( ) ( ) ( ) ||

1
|| ( )( ( ) ( )) ( ( ) ( )) ||

1
( ) || ( ( ) ( )) || || ( ( ) ( )) || 2 ( )

N Ni j j

x ijj j

j i j i

ijj i j i

j i j i

ij xj i j i

v k x k w k x k x k
N

w k x k x k x k x k
N

w k x k x k x k x k k
N

= =

≠ ≠

≠ ≠

− = −

= − − −

≤ − + − ≤ ∆

∑ ∑

∑ ∑

∑ ∑
 

We will prove this lemma by contradiction. Suppose that *
x  is not the optimal solution of 

[ ]if  over X . Then the following 

inequality holds: 

[ ] *

1
s.t. ( ) ( )N i

i
x X X f x f x=∃ ∈ = >∩                                                  (7) 

Then, there exists 0ς >  such that 
*( ) ( )f x f x ς= + . Consider the sequences of 

[ ]
{ ( )}

i
x k  which converge to *

x . Then, it 

follows from Lemma 4.2 that 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

2 [ ] 2 [ ] 2 2

1 1 1

[ ]

1

[ ] 2 [ ] 2 2

1 1

[ ]

1

|| ( 1) || ( ( )) || ( ( )) || || ( ) ||

2 ( )( ( ( )) ( ))

( ( )) || ( ( )) || || ( ) ||

2 ( ) ( ( ) ( ) ( ))

N N Ni i ii i

x xi i i

N i i ii

xi

N Ni ii i

x xi i

Ni

i i ii

x k x k D v k x k x

k f v k f x

k D v k x k x

k A k B k C k

α

α

α

α

= = =

=

= =

=

+ − ≤ + −

− −

≤ + −

− + +

∑ ∑ ∑

∑

∑ ∑

∑
 

where  

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

*

*

ˆ( ) ( ( )) ( ( ))

ˆ( ) ( ( )) ( )

( ) ( ) ( )

i i i

i x

i i

i

i i

i

A k f v k f x k

B k f x k f x

C k f x f x

= −

= −

= −
 

Further, from the subgradient boundedness Assumption 3.3, 

[ ]

[ ] [ ]* * *

1 1

ˆ|| ( ) || || ( ) ( ) || 2 ( )

1
ˆ|| ( ) || || ( ) || || ( ) || || ( ) ||

i

i x x

N Ni i

i i i

A k L v k x k L k

L
B k L x k x L x k x x k x

N N= =

≤ − ≤ ∆

≤ − = − ≤ −∑ ∑
 

Since 
[ ] *lim || ( ) || 0
i

k
x k x

→+∞
− = , lim ( ) 0x

k
k

→+∞
∆ = , then ( )iA k  and ( )iB k  converge to zero as k → +∞ . Then there exists 

0 0k ≥  such that for all 
0k k≥ , it holds that 

[ ] [ ] [ ]

[ ]

2 2 [ ] 2 [ ] 2 [ ]

1 1 1 1

2 [ ] 2 2 [ ]

1

|| ( 1) || || ( ) || ( ( )) || ( ( )) || 2 ( ) ( )

|| ( ) || ( ( )) ( )

N N N Ni i ii i i

x x ii i i i

N i i i

i

x k x x k x k D v k k C k

x k x N k L k

α α

α ςα
= = = =

=

+ − ≤ − + −

≤ − + −

∑ ∑ ∑ ∑

∑
 

Following a recursive argument, we obtain for all 
0k k≥  

[ ] [ ]2 2 2 [ ] 2 [ ]

01 1
|| ( 1) || || ( ) || ( ( )) ( )

o o

N N k ki i i i

i i k k
x k x x k x NL

τ τ
α τ ς α τ

= = = =
+ − ≤ − + −∑ ∑ ∑ ∑              (8) 

Recalling that 
[ ]

0
( )i

k
kα+∞

=
= +∞∑  and 

[ ] 2

0
( ( ))i

k
kα+∞

=
< +∞∑ , and 

[ ] [ ]
0( ) ,

i i
x k X x X∈ ∈  are bounded, then (8) yields a 

contradiction as k → +∞ . That is to say, inequality (7) can’t hold. Therefore, we have the desired results. 
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Lemma 4.5: It holds that 
[ ] *lim || ( ) || 0
i

k
y k p

→+∞
− = . 

Proof: Since 
[ ] [ ] [ ]( 1) ( ) ( )
i i i

yy k v k u k+ = +  and 
[ ] [ ]

1
( ) ( ) ( )

Ni j

y ijj
v k w k y k

=
=∑ , the following holds for any 1k ≥ : 

[ ] [ ] [ ]

1
( 1) ( ) ( ) ( )

Ni j i

ijj
y k w k y k u k

=
+ = +∑

 

The following can be proven by induction on k  for a fixed 1k ′ ≥ : 

[ ] [ ] [ ] [ ] [ ] [ ]
1 1 1

( 1) ( ) ( ( ( )) ( ( 1)))
N N k Ni i i i i i

i i k i
y k y k N f x f x

′= = = =
′+ = + − −∑ ∑ ∑ ∑ℓ

ℓ ℓ                       (9) 

Let 1k ′ =  in (9) and recall that initial state 
[ ] [ ] [ ]

(1) ( (0))
i i i

y Nf x=  for all i V∈ . Then we obtain 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 1 1 1

( 1) (1) ( ( ( )) ( (0))) ( ( ))
N N N Ni i i i i i i i

i i i i
y k y N f x k f x N f x k

= = = =
+ = + − =∑ ∑ ∑ ∑          (10) 

From (10), we can obtain 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1 1
( ( 1) ( )) ( ( ( )) ( ( 1))) ( )

N N Ni i i i i i i

i i i
y k y k N f x k f x k u k

= = =
+ − = − − =∑ ∑ ∑               (11) 

Combining (11) with 
[ ] [ ]lim || ( ) ( ) || 0
i j

k
y k y k

→+∞
− = gives the desired result. Based on the above five Lemmas, we then finish 

the proofs of Theorem 4.1. 

5. Numerical Example 

In this section, we study a simple numerical example to illustrate the effectiveness of the proposed distributed projected 

subgradient algorithm. We here consider a network with five agents and their objective functions are formulated as follows:  

[ ] 4 2( ) ( ) ( ) , 1,2,3,4,5if x x i i x i i= − + × − =
 

where the global decision vector 
T 5

1 2 3 4 5[ ]x x x x x x R= ∈ . The optimization problem can be described as: 

5

[ ] [ ]

1
min ( ) s.t .i N i

ii Vx R

f x x X X=∈∈
∈ =∑ ∩                                                (12) 

where local constraint sets [ ]iX  are denoted by 

[ ]

[ ]

[ ]

[ ]

[ ]

1

2

3

4

5

[0.5,5.5] [0.5,5.5] [0.5,5.5] [0.5,5.5] [0.5,5.5]

[0.55,5.25] [0.55,5.25] [0.55,5.25] [0.55,5.25] [0.55,5.25]

[0.5,5] [0.5,5] [0.5,5] [0.5,5] [0.5,5]

[1,5] [1,5] [1,5] [1,5] [1,5]

[0.5,5.75

X

X

X

X

X

= × × × ×

= × × × ×

= × × × ×

= × × × ×

= ] [0.5,5.75] [0.5,5.75] [0.5,5.75] [0.5,5.75]× × × ×
 

We solve problem (12) by employing the distributed 

projected subgradient algorithm (4) with the step-sizes 
[ ] [ ]

{ ( )} 1/ ( )
i i

k k hα = + , [ ]i
h  is a positive linear function of i . 

Fig. 1 to 3 shows the simulation results of the distributed 

projected subgradient algorithm (4). Fig. 1 shows that local 

input [ ]i
u  tends to 0  when achieve consensus. It can be seen 

from Fig. 2 that all the agents asymptotically achieve the 

optimal solution by taking 300  iteration. We can observe 

from Fig. 3 that all the agents asymptotically achieve the 

optimal value.  

Fig. 1. Local input [ ] ( )iu k . 
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Fig. 2. All agents’ states [ ] ( )ix k . 

 

Fig. 3. The evolution of states [ ]( ), 1, 2,...,5iy k i = . 

6. Conclusion and Future Work 

In this paper, we formulated a distributed optimization 

problem with both local objective functions and local 

constraint sets private to each agent. Then, we proposed a 

novel distributed projected subgradient algorithm for the 

constrained optimization with a convergence analysis. The 

algorithm was shown to asymptotically converge to optimal 

solution and optimal value. A numerical example was 

presented to demonstrate the performance of our algorithm. 

Future work will focus on the problem with local objective 

functions, local equality, local inequality and local constraint 

sets. Also, we will pay attention to the convergence rates of 

the algorithms in this paper. 
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