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Abstract: Bifurcation behaviors are very important for the design of sensors. Using the sub-harmonic Melnikov method, the 

sub-harmonic bifurcation of single-walled carbon nanotube based mass sensor is investigated in this paper. The parametric 

conditions for sub-harmonic bifurcation of this system are obtained. It is presented that when the ratio of the excitation amplitude 

to the damping coefficient crosses a critical value, sub-harmonic bifurcations of m order (odd) can occur. The stability conditions 

of the bifurcation solution for the system parameters are also obtained by using the affection-angle transformation and average 

method. The result can provide some guidance for the design of this class of sensors. 
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1. Introduction 

Carbon nanotubes have caused wide public concern over 

the recent years due to their anisotropic structures and 

outstanding electrical and mechanical properties since a 

carbon nanotube was first produced by Iijima in laboratory in 

1991 [1] and have been considerable used to fabricate 

molecular devices [2, 3]. So far, canbon nanotubes have 

proved to be priming materials for a variety of applications 

such as flat panel field emission displays [4], nano-electronic 

devices [5], chemical sensors [6], and batteries [7]. In 

numerous recent papers, carbon nanotubes were assumed to 

behave as perfectly straight beams or straight cylindrical 

shells [8]. However, images taken by transmission electron 

microscopes for carbon nanotubes show that these tiny 

structures are not usually straight, but rather have certain 

degree of curvature or waviness along the nanotubes length 

[9, 10]. The curved morphology is due to process-induced 

waviness during manufacturing processes, in addition to 

mechanical properties such as low bending stiffness and large 

aspect ratio. 

Nonlinear dynamical behaviors have been investigated 

widely in recent years. Employing the atomic-scale finite 

element method, Guo et al [11] studied bending buckling of 

single-walled carbon nanotubes. It was shown that the 

appearance of kinks associated with the large deformation 

nearby reduced the slope of the strain energy curve in the 

post-buckling stages and hence increases the flexibility of the 

SWNTs. Wang and Cao [12] studied self-sustained terahertz 

current oscillation and chaotic dynamics in semiconducting 

single-walled zigzag carbon nanotubes using the 

time-dependent drift diffusion equations. The appearance of 

different nonlinear oscillating modes, including periodic and 

chaotic, was attributed to the competition between the natural 

oscillation and the external driving oscillation. Joshi et al [13] 

investigated nonlinear vibration of a wavy single-walled 

carbon nanotube based mass sensor. They also studied 

chaotic responses of single-walled carbon nanotube due to 

surface deviations with numerical methods [14]. With the 

Melnikov method and the Preissmann discrete method, Hu et 

al [15] investigated chaos in an embedded single-walled 

carbon nanotube. Applying the nonlocal elastic theory and 

numerical methods, Kuo [16] investigated chaotic vibrations 

of the single-walled carbon nanotubes on elastic medium. It 

was shown that the period-three oscillation, the chaos and the 

period-one oscillation were excited by the different excitation 

amplitudes. Using the direct perturbation technique, Fang [17] 

studied chaotic behavior and its control in the single-wall 

carbon nanotube. With theoretical and numerical approaches, 
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Kim and Lee [18] discussed the dynamics of an 

electrostatically actuated carbon nanotube cantilever. It was 

presented that high electrostatic excitation could lead to 

complex nonlinear responses such as softening, multiple 

stability changes at saddle nodes, or period-doubling 

bifurcation points in the primary and secondary resonance 

branches. By using the generalized multi-symplectic method 

and numerical method, Hu and Deng [19] investigated chaos 

in an embedded fluid-conveying single-walled carbon 

nanotube under transverse harmonic load series. It was 

shown that with the increase in the length of the nanotube 

and the increase in the number of the transverse load series, 

the chaotic region respected to the flow velocity decreases 

obviously. Using the consistent couple stress theory, 

Fakhrabadi [20] analyzed the small-scale effects on the 

nonlinear dynamic mechanical and electromechanical 

behaviors of the carbon nanotubes 

In this paper, the sub-harmonic bifurcation of 

single-walled carbon nanotube based mass sensor is 

investigated by the sub-harmonic Melnikov method. The 

parametric conditions for sub-harmonic bifurcation of this 

system are obtained. The stability conditions of the 

bifurcation solution are also presented by using the 

affection-angle transformation and average method. 

2. Formulation of the Problem 

The single-walled CNT based mass sensor investigated in 

this paper is shown as in Figure 1. 

 

Figure 1. Schematics of a CNT based mass sensor. 

Using the Lagrange equation and the Hamiltonian 

principle, the equation of motion is as follows [13]: 
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where 
c

m  is the mass attached to the CNT, ω  is the 

frequency of the transverse load applied due to the attached 

mass, E is the Young’s modulus, I is the second moment of 

the area, ρ  is the density of the nanutobe, A is the cross 

section area, F is the spatial distribution of the transverse 

load, L is the length of the nanotube. 

Considering the first mode of vibration and implementing 

the separation of variables technique 

( , ) ( ) ( )u x t x tγ θ=              (3) 

Where γ  and θ  represent the space and domain, 

respectively. 

The first mode shape of a doubly clamped wavy CNT is 

given as 

2
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Applying the Galerkin approach, the equation of motion of 

a doubly clamped wavy CNT under condition of primary 

resonance is as follows [13]: 

..
2 3

2
(1 ) 0.816 cos( )

F
M t

AL
θ αθ βθ εθ ω

ρ
+ + + + =  (5) 

where 

4 2 2
2

04 4
(5.33 7.74 ) ,

EI E

AL L

π πα ω
ρ ρ

= + =△
 

3

4
4.352

E

L

πβ
ρ

= △
，

4

4
0.89

E

L

πε
ρ

= ， 

2

cm
M

ALρ
= ,                  (6) 

Introducing damping in Eq.(5) in order to make the 

equation of CNT motion more realistic [14] and normalizing 

the equation using the parameters 
0

1/t ω=  as a 

characteristic time and 
out

r d=  as the characteristic length, 

the non-dimensional form of the equation becomes 

2.. .
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Considering 0∆ = , i.e., the case of straight CNT, then the 

equation of motion is 

2.. .
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Using the variable transformations 

2
/

x

r
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ε α
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then Eq.(8) becomes 

'' ' 3
cos( )x x x x f tς ω+ + + =        (10) 

where ' d / dx τ=  is the differential with respect to the 

dimensionless time τ , and 



 Applied and Computational Mathematics 2016; 5(3): 97-102 99 

 

2
, , 1

1

f
f M

rM

ξς ω ω
α

= = = +
+

ɶ       (11) 

Assume the damping and excitation terms ς  and f  are 

small, setting , f fς ες ε= = ɶɶ  ( ε  is a small parameter), 

then Eq.(6) can be written as 

'' ' 3
cos( )x x x x f tες ε ω+ + + = ɶɶ ɶ           (12) 

When 0ε = , the unperturbed system is 

'
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System (9) is Hamiltonian with Hamiltonian function 
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and (0,0) is the unique equilibrium point which is a center; 

there exist closed periodic orbits around (0,0) with the 

expressions 
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See Figure 2, where sn, cn, dn are Jacobi elliptic functions. 

The period of the closed orbit is 24 1 2 ( )kT k K k= − , where 

( )K k  is the complete elliptic integral of the first kind, and 

k satisfies 
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Obviously, when ,h → ∞  it follows 
1
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when 0,h →  it follows that 
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and 
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i.e., ( )T k  is decreases monotonously for (0,1/ 2)k ∈ , 

therefore ( ) (0,2 )T k π∈ , the smaller the period is, the larger 

the kinetic energy. 

 

Figure 2. The phase-portrait of system (13). 

3. Sub-harmonic Bifurcations 

In this section, sub-harmonic bifurcations of system (10) 

are investigated with the sub-harmonic Melnikov method 

[21]. It can be computed that the sub-harmonic Melnikov 

function for the periodic orbits (15) satisfying the resonance 
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When 

1
( ),

f
R m

ς
>
ɶ

ɶ
               (20) 

there exists a simple zero point for /

0( )m nM τ  for 

(0,2 )τ π∈ . Therefore, when the inequality (20) is satisfied, 

sub-harmonic bifurcations of m  (odd) orders for system (12) 

will occur, consequently periodic vibrations will occur. 

Denoting [ ]ωɶ  is the integer part of ωɶ , therefore, when the 

frequency ωɶ  of the external excitation is fixed, the 

numbers of sub-harmonic bifurcations of odd orders for the 

perturbed system is no more than 
1 [ ]

2

ω+ ɶ
. 

Remark: 
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(3) Further analysis presents that as the increasing of 
f

ς

ɶ

ɶ

from 0 to ∞ , no sub-harmonic bifurcations occur for system 

(12) while (0,1)ω ∈ ; sub-harmonic bifurcation with 1 order 

(i.e., the periodic is 2 /π ωɶ ) occurs while (1,3)ω ∈ɶ ; 

sub-harmonic solutions with 1 and 3 orders will occur for 

(3,5)ω ∈ɶ , and as the increasing of 
f

ς

ɶ

ɶ
, sub-harmonic 

bifurcation with 1 order first occurs, and then sub-harmonic 

bifurcation with 3 order occurs. Similar results can be 

obtained for (5,7)ω ∈ɶ , et al. 

4. Stability of the Sub-harmonic 

Bifurcations 

In this section, the stability of the sub-harmonic 

bifurcations is investigated with the affection-angle 

transformation and the second order average method. 

Using the affection-angle transformation 
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Consider the perturbation of the sub-harmonic orbit with 
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where kI  is the affection variable. Instituting (21) into (20), 

and expanding (16) to ( )o ε , one can obtain that 
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where ( )/m kM φ Ω  is the Melnikov integration of system 

(12) along the sub-harmonic orbit, the period of ( , )F tφɶ  is 

2 /T π ω= ɶ , and average value of ( , )F tφɶ  is 0. 

Using the average transformation 
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Eq.(26) can be written as 

3/ 2

' ( ) [ ( , , )
2

d
( ) ] ( )

d

m k k

k

k

h M F I t t
I

I h F dt O
I

ε φ ε φ
π

ε
φ

−

− −

∂= + Ω +
∂Ω

Ω ∂+ +
∂ ∫

 

2
2

2

3/2

( )

' ( ) [
2

G( , , )] ( ) ] ( )

k

k

k k k

d
I h

d d II h
dI

d
I t t I F dt O

dI

φ ε ε

φ ε

−

−

Ω
Ω= +

Ω+ Ω + + +∫

 (29) 



 Applied and Computational Mathematics 2016; 5(3): 97-102 101 

 

The mean value of Fdt∫ ɶ  and Fdt
φ
∂

∂ ∫ ɶ  is also 0 since 

the mean value of F
∼

 is 0. 

Applying the average theory to (25), using the 

transformation t tε→ , and denoting ( , )h φ  as ( , )h φ , 

one can obtain that 
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Then the hyperbolic or elliptic fixed points of system (29) 

are corresponding to the sub-harmonic orbits of morders for 

system (12). 

Noting that in the affection-angle transformation, 
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When 
d

dt

Ω < ∞ , ε  is small, the stability condition of 

sub-harmonic orbits can be determined by the trance of the 

linearization of system (29). The linearization matrix of 

system (29) is 
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When trace 0A > , the sub-harmonic orbit is saddle or 
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Using the following results: 
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Substituting (35)-(38) into (34), the stability conditions for 

the sub-harmonic conditions can be obtained. 

The result can provide some guidance for the design of this 

class of sensors. For example, while design the sensor, we 

should chose the system parameters suitable, such that they 

belong to the stable region, otherwise the periodic solutions 

are unstable and chaotic motions may occur, which can bring 

some damage to the sensors. 

5. Conclusions 

The sub-harmonic bifurcation of single-walled carbon 

nanotube based mass sensor is investigated with the 

sub-harmonic Melnikov method in this paper. The parametric 

conditions for sub-harmonic bifurcation of this system are 

obtained. It is shown that when the ratio of the excitation 

amplitude to the damping coefficient crosses a critical value, 

sub-harmonic bifurcations of m order (odd) can occur. The 

stability conditions of the bifurcation solution for the system 

parameters are also obtained by using the affection-angle 

transformation and average method. It provides some 

inspiration and guidance for the analysis and dynamic design 

of this class of system. For example, we should chose the 

system parameters suitable so that the periodic solutions are 

stable; otherwise chaotic motions may occur and damages to 

the sensors may happen. 
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