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Abstract: The general form of linearized exact solution for the Korteweg and de Vries (KdV) equation, with an arbitrary 

nonlinear coefficient, is derived by the simplest equation method with the Bernoulli equation as the simplest equation. It is shown 

that the proposed exact solution overcomes the long existing problem of discontinuity and can be successfully reduced to 

linearity, while the nonlinear term coefficient approaches zero. Comparison of four different soliton solutions is presented. A new 

phenomenon, named soliton sliding, is observed. 
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1. Introduction 

The word soliton was first used in Zabusky and Kruskal’s 

paper in 1965 [1]. A soliton can be defined as a solution to a 

nonlinear partial differential equation that exhibits the 

following three properties: (i) the solution should demonstrate a 

permanent form wave; (ii) the solution is localized, which 

means that the solution either decays exponentially to zero, or 

converges to a constant at infinity; and, (iii) the soliton interacts 

with other solitons preserving its character. The Korteweg and 

de Vries (KdV) equation is a typical nonlinear partial 

differential equation that provides soliton solutions. 

The KdV equation [2] in dimensionless variables is 

expressed as 

           (1.1) 

where  is scaled to any real number [3]. This nonlinear 

partial differential equation was derived by Kortewege and de 

Vries to describe shallow water waves of long wavelength and 

small amplitude. It is the simplest nonlinear dispersive equation 

embodying two effects: the nonlinear term, , and the 

linear dispersion term, . The nonlinearity of  tends 

to localize the wave, whereas dispersion spreads the wave out. 

The delicate balance between  and  defines the 

formulation of solitons that consist of single humped waves. In 

addition, there are various physical systems that can also be 

modeled by the KdV equation, such as acoustic waves in 

harmonic crystals and ion waves in plasmas [4]. 

Exact solutions of the KdV equation with a variable 

nonlinear term coefficient have been developed through a 

variety of analytical techniques, such as tanh-coth method [5-7], 

sine-cosine method [5], Hirota’s direct method [3, 8-9], and 

Exp–function method [10], among others [11-13]. 

From the literature [3, 5, 7-10], it can be found that all exact 

solutions of the KdV equation will approach to infinity and do 

not satisfy the continuity condition when the nonlinear term 

coefficient is zero. Obviously, they can not be reducible to 

linear solutions. 

In this paper, the linearized exact solutions of the KdV 

equation are derived by the simplest equation method with the 

Bernoulli equation as the simplest equation. It is shown that the 

proposed exact solutions overcome the problem of 

discontinuity and can be successfully reduced to linear ones, 

while the nonlinear term coefficient of the differential equation 

approaches zero. Differences among existing and linearized 

solutions are elaborated. Several numerical results are 

illustrated, through which a new phenomenon is revealed. 

2. Existing Exact Solutions of the KdV 

Equation 

Exact solutions of the KdV equation with a variable 
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nonlinear term coefficient developed by the tanh-coth method 

[5-7], the sine-cosine method [5], the Exp–function method 

[10] and others [11-13] can be summarized as 

,     (2.1) 

,   (2.2) 

, , (2.3) 

,       (2.4) 

and 

,         (2.5) 

,         (2.6) 

,       (2.7) 

,         (2.8) 

 

(a) 

 
(b) 

Figure 1. Existing soliton solutions. [ ; (a) equation (2.1) with , 

(b) equation (2.8) with .] 

where c is the wave speed. It is noted that equations (2.1-8) can 

all be obtained by the tanh-coth method [3], while equations 

(2.1-2) and (2.5) can also be found by the sine-cosine method 

[3]. From the solution forms, it can be found that among them, 

only solutions  and  are soliton solutions, as shown in 

Figure 1. 

When the nonlinear term coefficient in equation (1.1) is 

specified as 6, the exact single-soliton solution was obtained by 

using Hirota’s transformation [8], , as 

          (2.9) 

The two-soliton and the N-soliton solutions can also be 

obtained by the same transformation [3, 9]. Here the function 

),( txF  is assumed to have a perturbation expansion form; 

k  is determined to be an arbitrary constant; N is a positive 

integer. Setting ck =  in equation (2.9) yields a result that 

is the same as the solution, 1u , obtained by tanh-coth and 

sine-cosine methods.  

It is well known that, for solution continuity, if the nonlinear 

term coefficient  in nonlinear differential equations (1.1) 

approaches zero, the equation could be reduced to a linear one, 

and the nonlinear solutions should be reducible to linear 

solutions. However, from the existing solutions above, it can be 

observed that all solutions of the KdV equation are proportional 

to 1/α. When the nonlinear term coefficient, α ,  is reduced to 

zero, the solutions become infinity; therefore, none will satisfy 

the continuity condition at α = 0. In the following, new exact 

solutions of the KdV equation with linearized solutions are 

developed. 

3. Linearized Solutions for the KdV 

Equation 

Assume a partial differential equation. After a 

transformation by the wave variable , a 

nonlinear ordinary differential equation (ODE) results. 

         (3.1) 

3.1. The Simplest Equation Method 

The simplest equation method [14-20] is a method 

commonly used to develop the exact solutions of some 

ordinary nonlinear differential equations. Here, the method is 

applied to develop exact solutions of the KdV equation. 

For a large class of equations of the type represented in (3.1), 

the exact solution can be assumed to be in the form of 

        (3.2) 

where  and must be an integer;  are parameters; 
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 is a solution of a certain nonlinear ordinary differential 

equation with an exact solution, referred to as the simplest 

equation.  is determined by substituting equation (3.2) into 

equation (3.1) and balancing the linear term of the derivative’s 

highest order with the highest nonlinear term in equation (3.1). 

It is known that the Riccati [21, 22] equation is commonly 

selected as the simplest equation for the simplest equation 

method. However, Kudryashov [20] pointed out that the 

solution method is equivalent to tanh-coth method, and so the 

derived exact solutions of the KdV equation will be the same 

as those given in equations (2.1-8). 

In this paper, the Bernoulli equation was chosen as the 

simplest equation for the simplest equation method. The 

Bernoulli equation is in the form 

                (3.3) 

where  and  are constants. The exact solution of the 

equation above is [23] 

             (3.4) 

where  is an integral constant, here set as =0. 

After substituting equations (3.2-3) into (3.1), and 

equating the coefficients of the same powers of  to zero 

in the result equation, a system of algebraic equations 

involving , ( ) are derived. Having determined 

these parameters and using equation (3.4) an analytically 

closed form solution can be obtained. 

3.2. Linearized Solutions 

After a transformation by the wave variable , the 

KdV equation (1.1) can be transformed into the following 

nonlinear ordinary differential equation 

             (3.5) 

Substituting equation (3.2) into equation (3.5) and balancing 

the linear term of the derivative’s highest order, the balanced 

equation gives . Therefore, the solution can be 

constructed as 

            (3.6) 

Substituting equations (3.3) and (3.6) into (3.5), and setting 

like power coefficients of  to zero, leads to a system of 

nonlinear relationships among the parameters of the solution 

and the parameters of the solved equation class. 

,           (3.7) 

         (3.8) 

   (3.9) 

        (3.10) 

            (3.11) 

Solving equations (3.7-11) yields the following four cases 

Case1. , 

Case2. , 

Case3. , 

Case4. . 

As a result, the four linearized exact solutions are derived as 

         (3.12) 

        (3.13) 

      (3.14) 

        (3.15) 

When , and for property (ii) mentioned in section 1, as 

x approaches positive or negative infinity, the corresponding 

equations (3.12-15) all agree, equating to zero. Moreover, after 

numerical calculation using MATLAB, it can be seen that 

equations (3.12-13) with negative , and also equations 

(3.14-15) with positive , agree with property (i), 

demonstrating a wave of permanent form. The wave-type of the 

existing solutions, namely equations (2.1) and (2.8-9), as well 

as the linearized solutions, equations (3.12-15), are 

summarized in Table 1. 

Table 1. Wave types of the existing and linearized solutions for the KdV equation. 

Parameters Exact solutions 

  Existing solutions Linearized solutions 

Eq. (2.1) Eq. (2.8) Eq. (2.9) Eq. (3.12) Eq. (3.13) Eq. (3.14) Eq. (3.15) 

> 0 > 0 soliton NA soliton Traveling wave Traveling wave soliton soliton 

< 0 > 0 soliton NA soliton soliton soliton Traveling wave Traveling wave 
> 0 < 0 NA soliton soliton Traveling wave Traveling wave Traveling wave Traveling wave 

< 0 < 0 NA soliton soliton Traveling wave Traveling wave Traveling wave Traveling wave 
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(a) 

 

(b) 

Figure 2. Linearized soliton solutions. [ ; (a) equation (3.12) with 

, (b) equation (3.14) with .] 

Moreover, observing the form of equations (3.12-15), it can 

be found that equation (3.12) will equal (3.13), and equation 

(3.14) will equal (3.15) as . These soliton solutions 

are shown in Figure 2. It is noted that equation (3.12) with 

, and equation (3.14) with  could be 

equivalent to equation (2.1). This means, under certain 

conditions, that equations (3.12-13) and (3.14-15) are the 

same as (2.1). And for the continuous case, the soliton 

solution could be presented by equations (3.12-15) instead of 

equation (2.1). The evidence for this is found in Figures 1-2. 

Obviously, Figure 1a is the same as Figure 2b; and Figure 1a 

would be the same as Figure 2a if the ’s sign were 

inverted. 

The aim of this paper is to emphasize that these general 

form solutions, equations (3.12-15), are linearized solutions. 

They are reducible to linear solutions just as nonlinear 

equation (1.1) can be reduced to a linear equation by limiting 

 to zero. In searching the associated literature, the above 

linearized solutions, which satisfy the physical continuity 

meaning for the KdV equation with a variable coefficient, are 

described for the first time. To demonstrate this claim, two 

numerical results are presented and illustrated in the next 

section. 

4. Numerical Results and Discussions 

As stated before, the KdV equation [4, 24] is the pioneering 

model for analytical soliton solutions. In order to present the 

soliton feature, we use the existing soliton solutions 

(equations (2.1) and (2.8)) and the linearized ones (equations 

(3.14-15)) for comparison with variable parameters  and 

. First, for the four soliton solutions, we suggest that the 

wave speed  affects the steepening of the solitary wave. 

And, it can be seen that a higher speed moves the wave 

location forward, with  and , as shown in Figures 

3-6. Second, the nonlinear term coefficient  makes two 

great differences between the existing soliton solutions and 

the linearized ones. 

 

Figure 3. Influence of the wave speed  on equation (2.1). [ ,  ; 

: ; : ; : .] 

 

Figure 4. Influence of the wave speed  on equation (2.8). [ ,  ; 

: ; : ; : .] 

 

Figure 5. Influence of the wave speed  on equation (3.14). [ , 

 ; : ; : ; : .] 
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Figure 6. Influence of the wave speed  on equation (3.15). [ , 

 ; : ; : ; : .] 

 

Figure 7. Influence of the nonlinear term coefficient  on equation (2.1). 

[ , ; : ; : ; : ; 

: .] 

 

Figure 8. Influence of the nonlinear term coefficient  on equation (2.8). 
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Figure 9. Influence of the nonlinear term coefficient  on equation (3.14). 

[ , ; : ; : ; : ; 

: .] 

 

Figure 10. Influence of the nonlinear term coefficient  on equation (3.15). 

[ , ; : ; : ; : ; 

: .] 

 

Figure 11. Comparison between the linearized solution and the existing 

solution as the nonlinear coefficient varies from -1 to 1. [ , , 

; : equation (3.14); : equation (2.1).] 
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(i) For the existing soliton solutions, the parameter α  

only describes the steepening of the solitary wave. 

Unfortunately, the solitary wave will approach to 

infinity and become singular as α  approaches zero, 

as shown in Figures 7-8. The reason the waves become 

singular is entirely due to their solution forms being 

proportional to 1/α. This paradox has been overcome 

by the linearized soliton solutions. Figures 9-10 show 

that, under the same physical conditions, the linearized 

soliton solutions will not become infinity when α  is 

zero. Instead, they will become linear exponential 

solutions. As the nonlinear term coefficient α  varies 

from -1 to 1, with c = 4, x =7.5 and t = 2, the difference 

between equations (2.1) and (3.14) can be 

demonstrated, as shown in Figure 11. It can be seen 

that the linearized solution is a continuous function of 

α, while the existing solution has discontinuity at α = 0. 

It is noted that equations (3.14-15) are the same as 

equation (2.1) when 1=α . This assertion is 

demonstrated through Figures 7 and 9-11. 

(ii) (In Figures 7-8, the steep slope of the existing soliton 

solutions are maintained in the same location; however, 

this is not the case for the linearized soliton solutions. 

Moreover, the location of the steep slope of the 

linearized soliton solutions will slide and change as 

α  is changed. As shown in Figures 9-10, the location 

of the steep slope of the linearized soliton solutions 

slide to the right/left as α  is changed from 2 to 0.2. We 

have named this peculiarity the soliton-sliding 

phenomenon. 

5. Conclusions 

In this paper, the simplest equation method was employed to 

solve an important evolution equation namely the KdV 

equation, and obtained linearized solutions. The proposed 

derived solutions can be successfully reduced to linearity, while 

the nonlinear term coefficient becomes zero. Two differences 

between the linearized soliton solutions and the existing soliton 

solutions were elaborated. As expected, the wave speed c  

presents the same two properties for those soliton solutions, 

affecting the steepening of the solitary wave and moving the 

wave location. However, it is not the case for the nonlinear term 

coefficient α . With constants x, c, and t, the existing solutions 

are proportional to 1/α,  and will become infinity as 

α  approaches zero. Although the steep slope in the existing 

soliton solutions are maintained in the same location, under the 

same physical conditions, the linearized soliton solutions will 

not become infinity when α  is zero. Moreover, the location of 

the steep slope in the linearized soliton solutions slide, which 

was termed the soliton-sliding phenomenon. The reason the 

linearized soliton solutions slide is entirely due to the influence 

of linearity. Extensions of the simplest equation method to 

study different nonlinear partial differential equations without 

linearized solutions are expected in future works. 
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