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Abstract: Over the years applications of mathematics in the form of mathematical modeling in a whole range of different 

fields including physical, social, management, biological, and medical sciences have broken all bounds. In particular, the 

mathematical models to study population dynamics of various interacting species in an isolated environment have attracted the 

attention of mathematical biologists. In nature, there may be two, three, or more species interacting within themselves giving 

rise to the corresponding predator-prey models. In each case, both predator and prey evolve their own strategies to deal with 

the situation. The parameters which influence both the predator and the pry to evoke strategies for their survival include 

environmental conditions, predator’s appetite, aggressiveness, liking for some particular prey, its physical fitness versus that of 

the prey, prey’s agility, active prudence to run away or hide, etc. In the literature interactions between, two, three or more 

species, sharing the same habitat have been discussed in detail. In this paper we present a model pertaining to the interaction 

between three species. It is a realistic model in which three species, x, y and z, interact within themselves in such a way that 

species y (predator) preys on species x (prey), while the species z preys on both the species x and y. Accordingly, the resulting 

situation has been analyzed. The objective of this paper is to analyze the possibility for three interacting species to live in an 

isolated environment harmoniously. The model presented here has three equilibrium points, however, only one of them has 

been ascertained to be locally stable. The existence of this equilibrium point signifies amicable coexistence of the three species, 

if no outside intervention accrues any destabilization to the existing environment. 

Keywords: Malthusian Growth Model, Carrying Capacity of Environment, Logistic Equation, Malthus-Verhulst Equation, 

Lotka-Volterra Equations, Equilibrium Point, Jacobian Matrix 

 

1. Introduction 

A population tends to grow over time if sufficient 

resources of food and space are available and there is no 

threat from predators. In such a case, the growth rate is 

proportional to the size of the population itself, so that in 

each unit of time, a certain percentage of the population gives 

birth to new offsprings. If the reproduction of the new 

individuals takes place just about continuously, the growth 

rate is given by, 

���� =  αP,                                   (1.1) 

where, P is the population, t is the time and α is the constant 

of proportionality. Its solution is given as, 

P = P�e
�,                                 (1.2) 

where, P0 is the population at time t = 0. In other words, the 

population grows exponentially. It is depicted in Fig. 1.1(a). 

Basically it is Malthusian Growth Model
[1]

, named after an 

English cleric and scholar Thomas Robert Malthus (1766 – 

1834), who discussed it in an essay in 1798. In the field of 

population ecology, this model is generally regarded as the 

first principle of population dynamics. He observed that, if 

not checked, the human population would grow 

exponentially while the production of food items grows 

arithmetically. Accordingly, he warned that at some point in 

time in the future, the continued population growth would 

exceed food growth resources, leading to naturally occurring 

catastrophic checks on population growth like famine, 

disease, war, etc. 

The formula (1.2) may work for a short while but not for a 

long duration. As such, the exponential growth model of a 

population is unrealistic as it does not incorporate limitations 

due to food shortage, predation, disease, etc. 
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Fig. 1.1. (a) Exponential Growth of Population (b) The S

Logistic Growth. 

The environment imposes restrictions to the population 

growth, and most of the populations cannot grow 

continuously because during the process of their growth,

stage would reach when they would run short of food

sunlight, space, or other resources, required for their survival.

At that stage the growth rate would begin to slow down

tend to a stable level known as carrying capacity of 

environment. It is denoted by K, and we see that K >> P(t) at 

time t = 0. The carrying capacity of population is the 

maximum number of its individuals, which the existing 

resources can support in an environment. Thus

of carrying capacity is to act as a moderator

process to slow down the growth rate to a stable level

resources become limited and stop growth once

size has reached this stage (see Fig 1.1 (b)).

intraspecific competition evolves so that individuals within a 

population who are better adapted to the environ

while others fade away. 

The above discussion leads us to replace Eqn.(1.1) by the 

following differential equation, called logistic equation,

Verhulst equation
[2],[3],[4]

 (named after Belgian mathematician 

Pierre Francois Verhulst (1804-1849)). Generally it is called 

Malthus-Verhulst equation, 

���� = αP�1 – �� �,                             
where, K is the carrying capacity of the environment, as 

described above. We see that if K > P, then 

population growth rate increases, while for K < P,

equation gives 
����  < 0, i.e., the growth rate declines.

The equilibrium points of the logistic equation (1.3) are 

those where 
����  = 0. They are, P(t) = 0, and P(t) = K

The logistic equation (1.3) can be solved by the method of 

separation of variables as, 

� ��������� = � � dt. 

Resolving the integrand on the left hand side

fractions, and integrating both sides we obtain the solution to 

the logistic equation as, 
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can be solved by the method of 

the integrand on the left hand side into partial 

, and integrating both sides we obtain the solution to 
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where, P(0) = 
���� , so that, A = 

In ecology, the predator-prey theory revolves around 

dynamical relationship between the predators and the prey. 

This theory has its origin in Malthus

given by Eqn.(1.3), which concerns single

dynamics. If we replace P by variable x and α by a, Eqn.(1.3) 

becomes, 

���� � ax�
where, x is the present population size, t is the time, a is a 

constant defining the growth rate and K is the carrying 

capacity of the environment. Although this equation appears 

to be a simple one but it plays the main role in the population 

dynamics of single-species. 

Alfred James Lotka
[5],[11], [13]

mathematician, bio-physicist and bio

to make significant contributions in the field of population 

dynamics. He derived the logistic equation using the first 

principles, and proposed the fir

interactions (now called Lotka

Vito Volterra
[6],[11] ,[13]

 (1860 

mathematician and bio-physicist independently investigated 

these equations in 1926 while making statistical ana

fish catches in the Adriatic sea during Wor

Lotka-Volterra equations (or predator

describe the growth rates of two interacting species

are, 

�����  �  a�x
����  �  �a

where, 

(i) x is the population size of prey

(ii) y is the population size of predator

(iii) All ai’s and bi’s are positive constants,

(iv) a1 is the intrinsic growth rate of prey x,

(v) a2 is the death rate of predator y in the absence of 

prey x, 

(vi) b1 is the death rate of prey x due to predation by 

predator y, 

(vii) b2 is the growth rate of predator y on predation of 

prey x. 

In this model it is assumed that the two species interact 

only within themselves, and no outside factor has any effect 

on the system, like influence of some other species or the 

environment. Although this model makes unrealistic 

assumptions, nevertheless it provides a base for the 

researchers to refine and make it a tractable model.

Models for three interacting species

extensively since early seventie

models have been discussed, the followi

to many of the researchers
[9],[10],[11],[12]
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�� !" ,                                  (1.4) 

, A = 
���������� . 

prey theory revolves around 

dynamical relationship between the predators and the prey. 

Malthus-Verhulst logistic theory 

, which concerns single-species population 

If we replace P by variable x and α by a, Eqn.(1.3) 

� 1 – ���,                            (1.5) 

ation size, t is the time, a is a 

constant defining the growth rate and K is the carrying 

capacity of the environment. Although this equation appears 

the main role in the population 

, [13]
 (1880–1949), a US bio-

physicist and bio-statistician is the next 

to make significant contributions in the field of population 

. He derived the logistic equation using the first 

principles, and proposed the first model for predator-prey 

(now called Lotka-Volterra equations) in 1925. 

(1860 – 1940), an Italian bio-

physicist independently investigated 

these equations in 1926 while making statistical analysis of 

sea during World War-I. The 

(or predator-prey equations), which 

describe the growth rates of two interacting species
,[14] ,[15]

, 

x – b�xy     
%y & b%xy',                     (1.6) 

x is the population size of prey at time t, 

y is the population size of predator, 

’s are positive constants, 

growth rate of prey x, 

rate of predator y in the absence of 

rate of prey x due to predation by 

is the growth rate of predator y on predation of 

In this model it is assumed that the two species interact 

only within themselves, and no outside factor has any effect 

influence of some other species or the 

environment. Although this model makes unrealistic 

it provides a base for the 

researchers to refine and make it a tractable model. 

Models for three interacting species
[7],[8]

 have been studied 

extensively since early seventies. In this regard a number of 

have been discussed, the following being of interest 
[9],[10],[11],[12]

, 
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�
����  =  a�x – b�xy                   ����  =  −a%y + b%xy − c� yz�*��  =  −a+z +  c% yz              ,-.

-/
,                 (1.7) 

where, x, y and z are the population sizes of the three species. 

In this model, 

(i) The species y preys on x, 

(ii) The species z preys on y, 

(iii) a1 is the intrinsic growth rate of species x (prey), 

(iv) a2 is the death rate of species y (predator) in the 

absence of species x (prey), 

(v) a3 is the death rate of species z (predator) in the 

absence of species y (prey), 

(vi) b1 is the death rate of species x (prey) due to 

predation by species y (predator), 

(vii) b2 is the growth rate of species y (predator) on 

predation of species x (prey), 

(viii) c1 is the death rate of species y (prey) due to 

predation by species z (predator), 

(ix) c2 is the growth rate of species z (predator) on 

predation of species y (prey). 

In what follows, we shall discuss two-dimensional and 

three-dimensional models that are available in the literature, 

before discussing our model. 

2. Two Dimensional Model 

As illustrated above, the model describing dynamical 

behaviour between two interacting species is given by the 

system (1.6) In this model, the population of the two species 

is in equilibrium when both 
���� and 

����  are zero, i.e., x and y 

do not change with time. Accordingly, Eqn.(1.6) gives, say, 

F(x, y) = 0, as 

�x0a� – b� y1 = 0   y�−a% + b%x� = 03.                             (2.1) 

This system has two solutions (i.e., stationery points or 

equilibrium points), the trivial solution, (0, 0) and (
5676, 

5878). 

The first equilibrium point (0, 0) is of no interest because it 

implies non-existence of any organism in the system, 

however, the second equilibrium point needs to be analyzed 

to study the dynamics of the system. The dynamical 

behaviour (i.e., stability or otherwise) of an equilibrium point 

can be studied by computing the eigenvalues of the Jacobian 

matrix of the system (2.1). It amounts to linearization of this 

system (by taking partial derivatives) as, 

∇ F(x, y) = J(x, y) = :a� –  b� y – b� xb%y −a% + b%x;.     (2.2) 

The Jacobian matrix at the equilibrium point (0, 0) is given 

as, 

J(0, 0) = :a�  00 −a%;.                            (2.3) 

Its eigenvalues are a1, and – a2. Since a1 and a2 are always 

greater than zero, both these eigenvalues have opposite signs. 

As such, the equilibrium point (0, 0) at the origin is a saddle 

point, i.e., an unstable equilibrium point. If it were a stable 

equilibrium point, the non-zero population of the two species 

would be attracted towards this point resulting in the 

extinction of both of them for any initial population sizes of 

the two species. Since it is an unstable equilibrium point so 

natural extinction of both the species would not be possible 

unless the prey were artificially eradicated leading to the 

death of predators due to starvation. On the other hand if the 

predators were artificially eradicated, the population of the 

prey would grow exponentially. 

For the second equilibrium point (
5676, 

5878), Eqn.(2.2) gives, 

J(
5676, 

5878) = < 0 − =6>8>6=8>6>8 0 ?.                         (2.4) 

Its eigenvalues are λ�= A√a� a%, and λ%= −A√a� a% . Thus 

(
5676, 

5878) is a stable equilibrium point. 

In order to analyze the system (1.6) further we divide the 

second equation by the first to get, 

����  = �56��76��58� – 78�� = ���56�76����58 – 78 �� . 

It is a first order separation of variables type differential 

equation. On solving this equation we obtain, 

a� ln y − b� ln y + a% ln x − b% ln x = ln K, 

where, K is the constant of integration. On further 

simplification it yields, 

K = F=8  G�>8HI=6  G�>6J = 
JK6  HK8L  M6NOM8P,           (2.5) 

where e is the Euler number. This quantity approaches its 

maximal value for x > 0, y > 0, at the equilibrium point  

(
5676, 

5878), which is, 

KQ5� = [ =6>6 L]=6  [ =8>8 L]=8 

3. Three Dimensional Model 

We shall discuss the model (1.7) concerning three 

interacting species. We know that at the equilibrium points, ���� , ���� , and 
�*�� are zero. Therefore, the system (1.7) gives, 

� x0a� –  b� y1 = 0                  y�−a% + b%x − c� z� = 0z�−a+  +  c% y�  = 0           '                     (3.1) 

This system has two equilibrium points, (0, 0, 0) and  

(
5676, 

5878, 0). We shall discuss both of them separately as the 

stability of the system depends on these points. 

As describes above, the dynamical behaviour (i.e., stability 

or otherwise) of an equilibrium point can be studied by 
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computing the eigenvalues of the Jacobian matrix of the 

system (3.1). It amounts to linearization of this system (by 

taking partial derivatives) as, 

J�x, y, z�  = <a� – b�y – b�x 0b%y −a% + b%x − c�z – c�y0  c% z −a+  +  c%y?.                                                          (3.2) 

Therefore, the Jacobian matrix at the equilibrium point    

(0, 0, 0) is given as, 

J�0, 0, 0�  = Ua� 0 00 −a% 00 0 −a+
V.                      (3.3) 

The eigenvalues of this Jacobian matrix are: λ� = a1,         λ% = – a2, and λ+= – a3. Thus, we see that the equilibrium 

point (0, 0, 0) is a saddle point. 

For the equilibrium point (
5676, 

5878, 0), the Jacobian matrix 

(3.2) becomes, 

J(
5676, 

5878, 0) = 

WX
XX
Y 0 – 567876 058 Z678 0 – 58 [8780  0 −a+  +  58\678 ]̂

^̂
_
 .                (3.4) 

The eigenvalues of this Jacobian matrix are: λ�= A√a� a%, λ% = −A√a� a% , and λ+  = 
58\6� 5`78 78 . Thus we see that the 

equilibrium point (
5676, 

5878, 0) is locally stable if the eigenvalue λ+ is negative, i.e., a3b1 > a1c2. As such, the equilibrium point 

(
5676 , 

5878 , 0) provides a possible equilibrium state in Lotka-

Volterra model. 

4. Model Formulation 

It is felt that the three dimensional model (1.7) does not 

represent the real picture of an isolated ecological 

environment. In this model the species z prey on the species 

y only, which is contrary to reality. In fact, the species z 

would prey both on species y as well species x. Keeping the 

same in view we present our model as under, 

�
����  =  a�x – b�xy − c�xz    ����  =  −a%y + b%xy − c%yz�*��  =  −a+z + b+xz + c+yz,-.

-/
,                 (4.1) 

where, all ai, bi, and ci, (i = 1, 2, 3), are positive constants 

giving intrinsic rates as under, 

 

(i) a1 = Intrinsic growth rate of species x (prey) in the    

            absence  of species y and z (predators), 

(ii)  a2 = Death rate of species y (predator) in the absence   

               of species x (prey), 

(iii)  a3 = Death rate of species z (predator) in the absence   

               of species x, and y (preys), 

(iv)  b1 = Death rate of species x (prey) due to predation by   

               species y (predator), 

(v)   b2 = Growth rate of species y (predator) on predation   

               of species x (prey), 

(vi)   b3 = Growth rate of species z (predator) on predation   

                of species x (prey), 

(vii) c1 = Death rate of species x (prey) due to predation by   

                species z (predator), 

(viii) c2 = Death rate of species y (prey) due to predation   

                 by species z (predator), 

(ix)   c3 = Growth rate of species z (predator) on predation   

                 of species y (prey), 

4.1. Equilibria and Linear Analysis 

While analyzing systems of differential equations it is 

often useful to consider the solutions that do not change with 

time, i.e., solutions for which, 
���� , ���� , and 

�*�� are zero. Such 

solutions are called equilibria, steady states or fixed points. 

Accordingly, system (4.1) becomes, 

� x�a� − b�y − c� z� = 0     y�−a% + b%x − c% z� = 0 z�−a+ + b+x + c+y� = 0  '.                        (4.2) 

The solutions or equilibrium points of this system are: the 

trivial solution (0, 0, 0), and (0, 
5`\`, 

�56\6 ) , (
5`7`, 0, 

58\8), (
5676, 

5878, 0). 

Thus, we see that at the most, there exist three non-negative 

equilibrium points of the system (4.1). 

4.2. Stability of Equilibrium Points 

The stability of the equilibrium points can be analyzed by 

computing the eigenvalues of the Jacobian matrix of system 

(4.2) at these points. The Jacobian matrix of this system is 

given as 

J(x, y, z) = <a� – b�y − c�z – b�x – c�xb%y −a% + b%x − c%z – c%yb+ z  c+ z −a+  + b+x −  c+y?.                                          (4.3) 

We shall transcribe the Jacobian matrix at the equilibrium 

points and then compute the eigenvalues to examine the 

stability of these equilibrium points. 

4.2.1. Equilibrium Point: (0, 0, 0) 

Corresponding to the equilibrium point (0, 0, 0), the 
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Jacobian matrix (4.3) becomes, 

J(0, 0, 0) = Ua� 0 00 −a% 00 0 −a+
V.                     (4.4) 

The eigenvalues of this matrix are given as, λ� = a1,  λ% = – a2, and λ+= – a3. This shows that the equilibrium point 

(0, 0, 0) is a saddle point. Thus (0, 0, 0) is an unstable 

equilibrium point, and of no interest to us. 

4.2.2. Equilibrium Point: (
abcb, 0, 

aded) 

With regard to the equilibrium point (
5`7` , 0, 

58\8 ), the 

Jacobian matrix (4.3) becomes, 

J(
5`7`, 0, 

58\8) = 

WX
XX
Y 0 – 5`787` – 5`\87`0 −f% + 5`767` − 58\6\` 058 Z`\8  58 [`\8 0 ]̂

^̂
_
.   (4.5) 

The eigenvalues of this matrix are computed as: λ� = Aga� a+ , λ% = −Aga� a+ , and λ+  = [
5`767`  – (a2 + 

58\6\` )]. 

Therefore, the equilibrium point (
5`7`, 0, 

58\8) is locally stable if 

the eigenvalue λ+ is negative, i.e., if (a2 + 
58\6\` ) > 

5`767`  . 

4.2.3. Equilibrium Point: (
ahch, 

adcd, 0) 

In respect of the equilibrium point (
5676, 

5878, 0), the Jacobian 

matrix (4.3) yields, 

J(
5676, 

5878, 0) = 

WX
XX
Y 0 – 567876 – 56\87658 Z678 0 − 58 [6780  0 −f+ + 567`76 + 58\`78 ]̂

^̂
_
.     (4.6) 

The eigenvalues of this matrix are: λ� = A√a� a% ,  λ% = −A√a� a%, and λ+ = [– a3 + ( 567`76  + 

58\`78  )]. We see that 

the equilibrium point (
5676 , 

5878 , 0) is locally stable only if  

a3 > ( 567`76  + 

58\`78  ), which is not likely. Therefore, it is an 

unstable equilibrium point. 

5. Discussion about the Results 

We have seen that there are three non-negative equilibrium 

points of the system (4.1): (0, 0, 0), (
5`7`, 0, 

58\8), and (
5676, 

5878, 0). 

We have analyzed each one of them separately and have 

found that, 

(i) (0, 0, 0) is a saddle point, therefore, it is an unstable 

equilibrium point. 

(ii) (
5`7` , 0, 

58\8 ) is locally stable equilibrium point if         

(a2 + 

58\6\` ) > 
5`767`  

(iii) (
5676, 

5878, 0) is an unstable equilibrium point. 

From the above discussion we deduce that the system (4.1) 

has only one locally stable equilibrium point. 

6. Conclusion 

The predator-prey interactions between various kinds of 

species living in an isolated environment and sharing the 

same habitat manifest very perplexing phenomena. The 

proverb “survival of the fittest” applies to such a situation in 

letter and spirit. The preys design their deceptive strategies 

for their survival while the predators evolve aggressive as 

well as delusive lines of action to capture the preys. In this 

paper we have discussed the case of three species x, y and . It 

conforms to the nature wherein the species y preys upon 

species x, while the species z preys on both x and y species. 

Accordingly, we have found an equilibrium point for 

coexistence of the three species in a particular isolated 

environment. 
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