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Abstract: After the 2008 financial crisis, the global derivatives trading volume in options proportion is growing, more and 

more investors build portfolios using options to hedge or arbitrage, our futures and stock options will soon open. Theoretical 

research of options is also changing, option pricing models under Levy processes developed rapidly. In this context, a review of 

the China's warrants market and the introduction of option pricing models can not only help us to reflect Chinese financial 

derivatives market regulation, but also to explore the option pricing theory for China`s financial market environment. In the 

framework of Monte Carlo simulation pricing, we established mufti-Levy process option pricing models, the structural model 

for the given parameter estimation and risk-neutral adjustment method are discussed, the last part of this chapter is an empirical 

analysis of China warrants trading data in order to prove the validate of Levy models. Key word: Levy stochastic processes, 

option pricing models, Chinese warrants market, American option pricing, risk-neutral adjustment, variance reduction 

techniques. 
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1. Introduction 

The theoretical basis of Monte Carlo simulation is on the 

Law of Large Number. This law guarantees we can estimate 

the real value by the sample mean after enough times’ random 

simulation. And the errors of estimation can gradually 

converge with the increase in simulation times. But the 

convergence rate is negatively correlated with the sample 

variance, which implies that estimates by Monte Carlo 

simulation can be more accurate if the variances between the 

simulation values, with the simulation times being equal. Thus, 

the reduction of samples’ variance is key to improving the 

estimation’s precision. The incumbent techniques to reduce 

variances include Antithetic Variables Method, Importance 

Sampling, Control Variates Method, etc. Note that the core of 

the Antithetic Variables Method is to take the random numbers 

pair by pair and to ensure that each pair of random numbers is 

negatively associated with the mean. This method appears to 

be easy to operate. Importance Sampling Method endows each 

sample point with a weight to reduce the variances by 

transforming the measures. Control Variables Method helps to 

reduce the variance by selecting and artificially constructing 

an instrumental variable through the correlations of 

instrumental variables and original variables.  

This chapter is focusing on the generating algorithm of 

time-varying Brown Motion in Levy Process and introducing 

the Control Variables Method to deal with the reduction of 

sample points’ variances of Levy random numbers which to a 

great extent improves the efficiency of Levy option pricing 

model. Furthermore, owing to the fact that the algorithm 

should be matched up with multi-dimensional random 

numbers, this algorithm also considers the quasi Monte Carlo 

simulation technique, which generates the multi-dimensional 

variables in a single pass. As a result, this method at large 

increases the degree of uniformity and the randomness of 

random numbers and optimizes the algorithm. 

Section 1 in this article explains the correlations between 

the sample variance and the accuracy of Monte Carlo 

simulation technique. Section 2 introduces the rationales and 

implementation steps. The main algorithm 1 in this chapter, 

which aims at the variance reductions of Levy Process of 

varying-time Brownian algorithm, is on the base of the 

rationales of ordinary control variables method. Therefore, 

this section lays the theoretical foundations to the later 

algorithm. Section 3 formulates the generating algorithm of 
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Levy random numbers via the characteristics of Levy random 

process and mainly introduces the generating algorithm of 

pure jump Levy Process. And this algorithm makes the 

cushion to main algorithm of this chapter. Section 4 elaborates 

the quasi Monte Carlo multi-dimensional random number 

generating algorithm. The algorithm deals with the generation 

of multi-dimensional random numbers. Since the main 

algorithm in this chapter requires several matched random 

numbers, thus for the purpose of elevating the evenness of 

data dispersion, we use the quasi Monte Carlo simulation 

technique. On the basis of previous sections, Section 5 

combines the characteristics of Levy random numbers, the 

rationales of control variables method and quasi Monte Carlo 

technique and gives the variance reduction technique for the 

varying-time Brownian algorithm, which is tested empirically 

in Section 6. The empirical result illustrates that the two pairs 

of random numbers have a good correlation and offers a 

satisfactory effect to reduce the variances. 

2. Variance Reduction Technique 

Principle 

First, we introduce how the variance affects the efficiency 

of estimation in the Monte Carlo simulation. Suppose that the 

random variable X has probability density function f. We 

consider computing the value of function  by 

simulation. In the context of option pricing, we regard the X as 

the variable of logarithmic return rate of the underlying assets, 

where f is the respective Levy distributional function, and 

 is the respective option’s pricing function. We 

obtain the sample set by n-time simulations. In this case, we 

need to evaluate the option’s price on the information set F: 

 Let us consider the sample mean: 

                (2.1) 

What we need is that the sample mean C approximation to 

the true values, by the law of large numbers can attest, any 

, there are: 

        (2.2) 

The  is a random variable, the standard deviation of X, 

the corresponding confidence level can be obtained, under the 

condition of , the number of simulations N must be 

determined by the formula: 

                  (2.3) 

Now the confidence interval is within . 

We can infer from this result that with given estimation times, 

the confidence intervals can be shortened by reducing the 

variance of random variables to improve the accuracy of 

estimates. Here note that, with the standard deviation of the 

random variable being unknown, for some real-world 

calculation, we can replace it by sample standard deviation. 

3. Levy Process Variance Reduction 

Techniques Under Time-Varying 

Brown Algorithm 

As for the selection of control variable CY, Dingec, 

Hormann has creatively use the simulation result under the 

geometric Brownian motion of option Monte Carlo as the 

control variables with the Levy Process’s generating 

algorithm. It simplifies the generation of the control variables 

and facilitates the application to the option pricing. By this 

means, our study has constructed this variance reduction 

technique based on the time-varying Brownian algorithm and 

quasi-Monte Carlo method of Levy process for option pricing. 

Contrary to the ordinary control variables method for option 

pricing, this algorithm has the following characteristics:  

1. It introduces the subordinate Brownian motion Levy 

random number generating algorithm and could be 

conveniently expanded to most of Levy processes, which 

makes the variance reduction technique for option 

pricing more universal. 

2. The control variable CY generated by this technique has 

a much higher correlation level with the original variable 

Y. It to a larger part improves the effect of reducing 

variance.  

3. By quasi Monte Carlo simulation technique, the 

multi-dimensional random variables are more 

densely-deployed and the overall computational 

efficiency is improved. The followings are the details of 

implementation: 

For the underlying asset with the expiration date T, the 

opening price So and the pricing price, we define the option Y. 

The variance reduction algorithm of Levy Monte Carlo on 

subordinate Brownian motion algorithm has the following 

steps:  

1.  where N is the simulation times. 

2. using the Ermontecalo simulation algorithm, generating 

the time of length T K dimensional uniform distribution 

of [0,1] number;  

 

3. We use the first two dimensions of the 

uniformly-distributed random numbers to generate the 

one-dimension normal random number B with the 

length of T by BOX-Muller algorithm. 

4. Using the normal random number B, according to the 

model and the historical data of option Y, we can 

generate the random number of return rate subject to 

geometric Brownian motion. With the remaining normal 

random numbers, taking B as the basic subordinate 

Brownian motion, we also generate the return rate series 

LR by subordinate Brownian motion Levy generating 
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algorithm. 

5. Measure transformation of two groups of random 

numbers, converted into a risk neutral measure value. 

6. Simulation of path construction of basic assets 

,  by  

and ; at the same time, Simulation of path 

construction of basic assets , 

 by  and  

7. By Levy process under the asset path, geometric Brown 

motion path and asset option pricing formula, the first 

generation of simulated price options: 

 and  

8. Construction of new variables: 

 

9. End 

10. Take the mean of the option price Y by N-time 

simulation. And take the confidence interval according 

to the related distributions. 

4. The Empirical Results of Variance 

Reduction 

To test the effect of the variance reduction technique of 

time-varying Brownian motion quasi-Monte Carlo simulation, 

this section uses European style option S with the underlying 

asset tied to HSI trading in the Hong Kong Stock Exchange. 

By adopting NIG, VG as two types of Levy Process and 

Halton, Sobol as two low-discrepancy sequences, we simulate 

the option pricing. 

NIG process is a random distribution function which is 

modified out from IG (Inverse Gaussian) process by 

Barndvrff(1998). Because this type of function has good 

properties of infinity Diversible, etc, it’s easy to take the 

model transformation and efficient to generate random 

numbers. It wide applied to the derivative pricing models 

under the Levy process(Stentoft,2008 ). VG process is the 

generalized hyperbolic random function proposed by Madan 

and Seneta(1990). Since VG process is greatly characterized 

by the high order moment of financial data and can be 

generated by two independent Gamma processes, it’s one of 

the most popular “pure jump-Levy” processes. The selection 

of low-discrepancy sequences is owing to the high generating 

efficiency of Halton, simultaneously the evenness of the 

high-dimensional dispersion. 

4.1. The Pricing Results 

First, we use the moment estimation method to estimate the 

logarithm return rate of HSI. Table 1 reports the estimation 

results. As these parameters are the values under the true 

measurement, the risk-neutral measure transformation is 

needed before the derivative pricing. 

Table 1. Levy parameter estimation results. 

NIG parameter estimation 
    

9.45E+04 -9.41E+04 0.006784382 0.076036841 

FG parameter estimation 
    

0.010353623 0.149199365 -0.008400928 0.004721057 

 

This model has nothing to do with the conditional 

heteroskedasticity. When measuring the risk neutral level, we 

can base on the identity function of random process to 

transform by risk-free return rate. The calculation of the new 

drift term is:  

                (4.1) 

Where W is the exponent part of the identity function. 

respectively. 

The identity functions of NIG , VG process are: 

                         (4.2) 

                     (4.3) 

Based on the previous transformation, we can simulate the 

logarithm return rate under the risk neutral measurement. 

Figure 1-2 reports regression results of the simulation 

distribution and the real-data distribution by NIG and VG 

models. As the graph shows, the two models for return rate 

can demonstrate the distribution characteristics of financial 

data, especially the right-skewed and fat-tailed. 
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Fig. 1. NIG model random distribution fitting.    Fig. 2. VG model random distribution fitting. 

Reduce the data of return rate by simulation to the price 

path. Them, by the pricing formula of European option, use 

the “quasi Monte Carlo variance reduction technique” pricing 

the 25 put and call options with distinct expiration prices 

respectively.  

 

Fig. 3. Call option pricing results under the NIG model.   Fig. 4. Put option pricing results under the NIG model. 

 

Fig. 5. Call option pricing results under the VG model.   Fig. 6. Put option pricing results under the VG model. 

In order to compare the NIG, VG models and test the effect 

of Sobol, Halton series on the pricing result, our study 

contrasted the pricing methods. Table 2 presents the 

differences. First, using NIG, VG models, then price the 25 

call and put options by Halton and Sobol low-discrepancy 

sequences respectively. Second, use RMSE (root mean square 
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error) and AAE(average absolute error) to account the pricing 

result. The two indicators are designed to measure the 

difference between the pricing result and market price. A 

smaller error shows a greater precision.  

The formulas of these two indicators are: 

         (4.4) 

Table 2. Levy pricing model results. 

Option type indicators 
NIG process NIG process VG process VG process 

Halton sequence Sobol sequence Halton sequence Sobol sequence 

Call options 
RMSE 172.6943 182.6824 125.2061 143.389 

AAE 158.4619 162.9705 109.6443 121.0722 

Put options 
RMSE 720.1251 579.6429 429.623 455.1074 

AAE 708.2064 549.1966 425.8076 431.6199 

 

As is illustrated in the results, the precision is slightly 

higher than NIG. These two types of Levy process can both 

help offer a greatly precise pricing. As for the VG process, the 

pricing results of call options appear to be better than put 

options. For call options, Halton sequences 

4.2. Random Distribution Characteristics 

Comparing to ordinary Monte Carlo simulation, the major 

advantage of “quasi Monte Carlo variance reduction 

technique” is to accelerate the speed of convergence by 

applying the quasi Monte Carlo technique and variance 

reduction technique. Thus, this Section presents the dynamic 

process of convergence in this simulation by this method. 

 

Fig. 7. The NIG option pricing process simulation convergence process. 

 

Fig. 8. The VG option pricing process simulation convergence process. 
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Table 2 shows the rates of convergence to the mean with the 

increase in the simulation times of the pricing results, under 

the NIG and VC process, respectively by the “quasi Monte 

Carlo variance reduction technique” and ordinary Monte 

Carlo simulation. In case of Monte Carlo simulation, the 

pricing of option requires at least 500 times’ simulation to 

achieve the convergence to the mean. While taking this 

variance reduction technique, only 150 times’ simulation can 

the pricing result be controlled within a reliable range. This 

shows that, for derivatives’ pricing models, “quasi Monte 

Carlo variance reduction technique” can effectively reduce the 

variance and the necessary simulation times, which helps 

improve the efficiency of pricing. 

5. Summary 

The application of Levy process can promote the overall 

pricing performance. At the expense of effectiveness, the 

Levy process seems more complicated and less efficient than 

the traditional normal random numbers. Considering ensuring 

the effectiveness of the pricing result after the use of Monte 

Carlo simulation technique, a large number of simulations 

should be taken. Thus how to improve the pricing 

performance under the circumstance of a low-efficient 

simulation is critical to all the Levy process Monte Carlo 

simulation. 

In years’ of research, variance reduction techniques are 

capable of improve the efficiency of Monte Carlo simulation. 

Moreover, the algorithm is relatively simple. It lays the 

technical foundation for Levy process variance reduction 

technique on the time-varying Brownian algorithm in this 

chapter. In the framework of this algorithm, we combine the 

following algorithm 

1. It corporates the subordinate Brownian motion Levy 

random number generating algorithm. Because this algorithm 

is based on the Brownian motion random number, we use the 

Subordinators to compress and transform the Brownian 

motion to Levy process. The Brownian motions before and 

after the compression have a strong association. Thus we use 

the corresponding Brownian motion as the basis of generating 

two groups of simulation data. One group is Levy process and 

the other is the related geometric Brown motion. Then 

following the framework of control variables method leads to 

the reduction of variance. 

2. The algorithms above involve many a random number. 

So for the reason of increasing the dispersion evenness, we use 

the quasi Monte Carlo simulation and match with the 

Box-Buller algorithm to generate normal random numbers. 

This offers the basic data support for the Levy process 

variance reduction techniques on time-varying Brownian 

algorithm. 

Finally, we use warranty dataset in Hong Kong to further 

the simulation theory. The empirical result shows that this 

method can help to fasten the rate of convergence of 

simulation and promote the efficiency of pricing. The 

precision of pricing can be improved. The specific effects of 

variance reductions also rest with the styles of options, the 

type of Levy process and the selection of low-discrepancy 

sequences. 
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