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Abstract: In this note we study a new n×n matrix of the form � = �a�����,
��
�
�,
�


�
, where a>1 is a real positive constant. We 

find determinant and inversion of this matrix and its Hadamard inverse. Then some bounds for the spectral norm of this matrix 

are presented. Finally we represent some properties of particular block diagonal matrices that their diagonal elements are these 

matrices. 
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1. Introduction 

Akbulak and Bozkort [1] studied Toeplitz matrices 

involving Fibonacci and Lucas numbers. They have found 

upper and lower bounds for the spectral norm of these 

matrices. Akbulak [2] studied Hadamard exponentioal matrix 

of the form ,[ ]nH i j

i je e +=�
 and found 

pl  norm, two upper 

bounds for spectral norm and eigenvalues of this matrix. 

Bozkurt in [3] investigated 
pl  norms of almost Cauchy-

Toeplitz matrices. Solak and Bozkort [4] determined bounds 

for the spectral and 
pl  norms of Cauchy-Hankel matrices of 

the form 
, 0

1
[ ]n

n i jH
g kh

==
+

, where k is defined by i j k+ =  and 

,g h  are any positive numbers. Civciv and Turkmen [6] 

established a lower bound and upper bound for the 
pl  norms 

of the Khatri-Rao product of Cauchy-Hankel matrix of the 

form 
, 0

1
[ ]
0 / 5

n

n i jH
i j

==
+ +

. Solak and Bahsi [9] studied the 

matrix of the form [ ]ijB b=  where min( , ) 1ijb a i j= + − . 

They obtained its Euclidean norm and inversion of this 

matrix.  

For more information one can see [1-5,7,8,10]. 

In this paper we define a particular n n× matrix 

min( , ) 1

, 1
[ ] ij

n
i j

ij
i j

A a a
−

=
 = =  

, where 1a > is a real positive number, 

in exact of the form 

1 1 1

1 2 2

1 2 1

1 1 1 1

1

1

1 n

a a a

A a a a

a a a −

 
 
 
 =
 
 
 
 

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

.                          (1) 

First by similar methods in some references which we 

illustrated in the beginning of this section we presented 

determinant of this matrix. Subsequently we show that this 

matrix is invertible and positive definite. Then we find some 

upper bounds and lower bounds for the spectral norm of this 

matrix. After that we get some properties of its Hadamard 

inverse, its product and the inversion of this matrix. Finally 

we study determinant and inversion of some block diagonal 

matrices that their diagonal elements are these matrices. All 

definitions and statements of this paper are available in 

references[1-4,7-11].  

2. Preliminary Definitions 

Let [ ]
ij

A a=  is an n n×  matrix, then the maximum column 

length norm 
1
(.)C  and maximum row length norm 

1
(.)r  of  

A  is defined by   

2

1( ) max j ij

i

C A a= ∑ ,
2

1
( ) max

i ij

j

r A a= ∑ .       (2) 

Hadamard exponential and Hadamard inverse of this 
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matrix are defined respectively by ijaAe e=� and ( 1) 1
( )

ij

A
a

− =� . 

The 
pl norm of A is defined by 

1

1 1

n n pp

ijp
i j

A a
= =

 
=  
 
∑∑ .                              (3) 

For 2p =  this norm is called Frobenius or Euclidean 

norm and showed by 
F

A . The spectral norm of A  is 

defined by  

2
1

max i

i n

A λ
≤ ≤

= ,                                   (4) 

Where 
i

λ  are the eigenvalues of matrix .HAA  Also HA  is 

conjugate transpose of .A  The inequality between the 

Frobenius and spectral norm is  

2

1
F F

A A A
n

≤ ≤ .                         (5) 

Let [ ]
ij

A a=  and [ ]ijB b=  are m n×  matrices. Hadamard 

product of A and B is defined by [ ]ij ijA B a b=� . Let ,A B  and 

C  are m n×  matrices and A B C= � . Then we have 

1 12
( ). ( )A r B c C≤ .                             (6) 

It is known that 

1
2 1

1

1 11

2
1

,
1

( 1)
.

( 1)

nn
k n

k

n nn
k

k

x x
x x x x

x

n x nx x
kx

x

−
−

=
+ −−

=

−= + + + =
−

− − +=
−

∑

∑

⋯

       (7) 

3. Main Results 

Theorem(3.1). Let A  be as in (1), then  

( 1)( 2)

1 2det( ) ( 1) . .
n n

nA a a
− −

−= −  

Proof. By definition of A  we have  

1 1 1

1 2 2

1 2 1

1 1 1 1

1

det( ) det .1

1 n

a a a

A a a a

a a a −

 
 
 
 =
 
 
 
 

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

 

By using elementary row operations we have 

1 1 1 1

0 01 0

22 001

1 1 1 2
1 0

det( ) det

a

a aa

n n n
a a a a a

A

−

−−

− − −− − −

 
 
 
 =  
 
 
  

⋯

⋯

…

⋮ ⋮ ⋮ ⋮ ⋮

⋯

. 

By expanding determinant of this matrix we obtain  

( 1)( 2)

1 2det( ) ( 1) . .
n n

nA a a
− −

−= −  

Corollary (3.2). Let 
i

∆  denotes the i th leading principal 

minors of ,A  in particular, 
1 1 , , det( )n A∆ = ∆ =… . Then we 

have  

2

2 1

1 1 1

1 2
1 2

2

2 1

1) ,

2) ,

(3) .

n n n

n n n
n n n

n n na

− −

− −
− −

− −

∆ ∆ ≥ ∆

∆ > ∆ > ∆ > > ∆

∆ ∆ = ∆

⋯  

Proof. By definition of principal minors and theorem  (3.1)  

we have  

(1)

( 1)( 2) ( 3)( 4)
1 32 2( 1) . ( 1) .

2

2 22( 2) 2( 2)5 7 5 6
( 1) . ( 1) .

2( 2)( 3)
2( 2) 22( 1) . .

1

n n n n
n n

a a a an n

n nn n n n
a a a a

n n
n

a a
n

− − − −
− −∆ ∆ = − −−

− −− + − += − ≥ −
− −

−= − = ∆ −

 

Thus the proof of (1) is completed. 

Proof of (3) is clear by definition of 
n

∆ . To proving (2) 

we just prove 
1 1

1
1

n n
n n

−
−∆ ≥ ∆ . The rest of proof is similar to this 

part. 

For positive integer 1n >  we have 

2 2

3 2

3 2

( 1)( 1) 2 1 2

( 2) ,

( 1)( 2)(2 2) 2 8 10 4

2 10 12 2 ( 2)( 3) .

n n n n n n

n n

n n n n n n

n n n n n n

− − = − + > −
= −

− − − = − + −
≥ − + = − −

 

So we have 

1 2

1

n n

n n

− −>
−

, 
( 1)( 2) ( 2)( 3)

2 2 2

n n n n

n n

− − − −≥
−

. 

Thus we get  

( 2)( 3)1 1 ( 1)( 2) 2 1

2( 1)2 1 1
1( 1) . ( 1)

n nn n n n

nn n n n n
n na a a a

− −− − − −
−− −

−∆ = − > − = ∆ . 

Theorem(3.3). Let A  be as in (1), then A  is invertible and 

the inversion of A   is a tridiagonal matrix of the form 
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1

11
1

0 1

( 1)
1

( 1)

1
1

1
( 1)

1

1
( 1)

a
b

a

b for i jij

a
b for i j nij i

a a

b for i jij i
a a

bnn n
a a

B A−

=
−

= − >

+
= = < = <

−

−
= − =− −

= − −

=

















. 

Proof. By theorem (3.1) it is clear that A is invertible. 

First we need a lemma from matrix algebra to prove the 

theorem. 

Lemma(3.4). Let A is an n n×  nonsingular matrix, b is an 

1n×  matrix and c is a real number. If we take 
T

A b
M

b c

 
=  
 

then 

we have 

1 1 1 1

1

1

1 1

1 1

T

T

A A bb A A b
k k

M

b A
k k

− − − −

−

−

 + − 
=  
 −
  

, 

where 1Tk c b A b−= − . 

Proof. By multiplying of two matrices 1,M M −  we have 

1 1 1 1

1

1

1 1

. .
1 1

T

nT
T

A A bb A A b
A b k k

I
b c

b A
k k

− − − −

+
−

 + −  
=  

   −
  

 

Thus the proof is completed. 

Now by principal of mathematical induction on n  we 

prove theorem (3.2). 

(Proof of theorem (3.2)). The result is true for 2n =  that is 

1

1 1

1
A

a

 
=  
  

 and
1

-1

a 1 a 1

-1 1

a 1 a 1

a

A− − −

− −

 
 

=  
 
  

. 

Now assume that the result is true for 1,n − that is 
min( , ) 1 1 1 min( , ) 1 1 1

, 0 , 0[ ] , ([ ] ) .i j n i j n

i j i jA a A a− − − − − −
= == =  Now by taking 

0 1 1
[ ] ,

T n n
b a a a c a

−= =⋯ , 
1

[0 0 1]
T

A b
− = ⋯ , 

Also by determining  

[ ]1 1

0 1 1

1 1

0 0 0 1 ,

[0 0 0 1][ , , , ]

( 1).

T n T

n n T

n n n

b A k a b A b

a a a a

a a a a

− −

−

− −

= = −

= −

= − = −

⋯

⋯ …  

We get 

1

1 1
.

( 1)nk a a−=
−

 

By substituting these values along with lemma (3.4) we get 

the result. 

Theorem(3.5). Let A be as in (1) , then the 
pl norm of A is 

( )

1

( 1)

2

(2 1) 2 1
.

1

p
n p np p

p p

a a n a n
A

a

+ + − + + − =
 − 

      (8) 

Proof. By definition of A and 
pl  norm we have 

( 2(2 1) (2 3) (2 5)
p p p

p
A n n a n a= − + − + − +

( 2) ( 1) ( )

1

3 ) (2 1) .
n

n p n p n k p

k

a a k a
− − −

=
+ + = −∑…  

1 1

(2 ( ) ( ) .
n n

np p k p k

k k

a k a a
− −

= =

 = − 
 

∑ ∑  

According to equalities (7) we obtain 

[

] ]

( 1)
( 1)

2 2
2

( 1)

( 1)

1

( 2) ( 1) 2
(2 1) (2 1)

]
2

( 1)

( 1) ( 2) 2
(2 1) (2 1)

.
2

( 1)

p

p

p n np p
n a na anp np

a na
p

a

n p p
a a

p
a

n p n p p p
n a n a a anp

a
p

a

n p n p p p
a a n a n a

p
a

A

− + − −− − + −+− −
− + −−

− − −
− + − + − −− − + + +

= − −
− − − −+ + − − +

= − −

=





 
 
  

 

By taking 
1

p
th power from the both sides of above 

equality we have 

( )

1

( 1) ( 2) 2
(2 1) (2 1)

2
1

.

p
n p n p p p

a a n a n aHna
p p

a

− − − −+ + − − +
=

− −

 
 
 
  

�  

If we rephrase the last equality we obtain 

( )

1

( 1)

2

(2 1) 2 1
.

1

p
n p np p

p p

a a n a n
A

a

+ + − + + − =
 − 

 

� 

Corollary(3.6). The Euclidean norm of A is   



 Applied and Computational Mathematics 2015; 4(2): 47-52 50 

 

( )

1

2
2( 1) 2 2

2
2

(2 1) 2 1
.

1

n n

F

a a n a n
A

a

+ + − + + − =
 − 

 

Proof. If we set 2p =  in (8) then we get the Euclidean 

norm of A .   

Theorem(3.7). Let A  be as in (1), then we have   

( )

( )

1

2
2( 1) 2 2

2 22

1

2
2( 1) 2 2

2
2

1 (2 1) 2 1

1

(2 1) 2 1
.

1

n n

n n

a a n a n
A

n a

a a n a n

a

+

+

 + − + + −  ≤
 − 

 + − + + − ≤
 − 

 

Proof. It follows from corollary (3.6) and (5). 

Theorem(3.8). Let A  be as in (1) then we have the 

following upper bound for spectral norm of A . 

2 2 2

2 22

1 1
( ) 1.

1 1

n na a
A

a a

−− −≤ +
− −

 

Proof. By definition of A  we have  

0 0 0

0 1 1

0 1 2

0 1 1

0 0 0

0 1 1

0 1 2

0 1 1

1 1 1

1 1 1

1 1 1

1 1 1

n

n

a a a

a a a

A a a a

a a a

a a a

a a a

a a a

a a a

C B

−

−

 
 
 
 =
 
 
 
 

   
   
   
   =
   
   
   
   

=

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

⋯ ⋯

⋯ ⋯

�… …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

�

 

By definition of row maximum length norm and column 

maximum length norm we have 

2
2

1 2

2 2
2

1 2

1
( ) max ,

1

1
( ) max ( ) 1 .

1

n

ij
i

j

n

ij
j

i

a
r C c

a

a
C B b

a

−

−= =
−

−= = +
−

∑

∑

 

According to (6) we know 
1 12
( ) ( )A r C c B≤ . 

Thus we have 

2 2 2

2 22

1 1
( ) 1.

1 1

n na a
A

a a

−− −≤ +
− −

 

Corollary(3.9). Let A  be as in (1), then A is positive 

definite matrix. 

Proof. According to theorem (3.1), all leading principal 

minors of A  are positive, thus the result follows from [11]. 

Corollary (3.10). Let A  be as in (1), then all eigenvalues 

of A  are positive. 

Proof. Since A is positive definite, so the result follows 

from [11]. 

Example(3.11). Let A  be as in (1). Determinants and 

eigenvalues of A  for 2a =  and some values of n  are 

represented in table1. 

Table 1. Determinants and eigenvalues of A   

n det (A) 
Eigenvalues of each A (is rounded off to four 

decimal places) 

2 1 0.3820, 2.6180 

3 2 0.3542, 1.000, 5.6458 

4 8 0.3532, 0.8804, 2.2275, 11.5386 

5 64 0.3535, 0.8754, 1.9227, 4.6332, 23.2152 

6 1024 0.3535, 0.8753, 1.9069, 3.9765, 9.3839, 46.5038 

7 32768 
0.3535, 0.8753, 1.9067, 3.9397, 8.0429, 18.8364, 

93.0454 

8 2097152 
0.3535, 0.8753, 1.9067, 3.9393, 7.9656, 16.1396, 

37.7100, 186.1101 

9 268435456 
0.3535, 0.8753, 1.9067, 3.9393, 7.9646, 15.9828, 

32.3085, 75.4393, 372.2300 

10 68719476736 
0.3535, 0.8753, 1.9067, 3.9393, 7.9646, 15.9808, 

31.9939, 64.6335, 150.8886, 744.4648 

Therem (3.11) Let A  be as in (1) and 
n

λ  be the largest 

eigenvalues of A , then we have 

12 1 1

1 1

n n n

n

a a a

a a
λ

−− + −≤ ≤
− −

. 

Proof. If we apply the well known Gershgorin’s theorem 

for the last row of A , then we get   

1
1 2 2 1

1
1

n
n n

n

a
a a a a

a
λ

−
− − −− ≤ + + + + =

−
⋯ . 

So we have 

1 1
1 11 1

1 1

n n
n n

n

a a
a a

a a
λ

− −
− −− −− ≤ ≤ +

− −
 . 

Thus we obtain 

12 1 1

1 1

n n n

n

a a a

a a
λ

−− + −≤ ≤
− −

. 

Hence we have an upper bound and a lower bound for the 

spectral radius of A . 

Corollary (13). Let A  be as in (1) and ( )Aρ  be the 

spectral radius of A , then we have 

12 1 1
( )

1 1

n n na a a
A

a a
ρ

−− + −≤ ≤
− −

. 
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Proof. Since 
( ) max{ ; ,

{1,2, , }},

i iA is an eigenvalue of A

for i n

ρ λ λ=

∈ …

 the 

result follows from theorem(3.11). 

Theorem(3.14). Let A  be as in (1), then determinant of 

Hadamard inverse of A  is 

( )
( 1)

( 1) 1 2det ( ) (1 ) .
n n

nA a a
−−− −= −�  

Proof. By definition of ( 1)
( )A

−� we have 

( 1)

1 1 1 1

1 1 11
1 1 2 2

( 1)1 21

det( )
a a a

a a a

n
a a a

A −
− − −
− − −=

− −− −

 
 
 
 
 

�

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

. 

By using elementary row operations we get 

( 1)
det( )A

− =�

1

2 2 1

( 1) ( 1) 1

1 1 1

01 0

01

1 0
n n

a

a a a

a a a

−

− − −

− − − − −

 
 − 
 − −
 
 
 − − 

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

. 

Thus by expanding this determinant we have   

( 1)

( 1) 1 2det( ) (1 ) .
n n

nA a a
−−− −= −�  

So ( 1)A −� is nonsingular and ( 1) 1
( )A

− −� exists. So we have 

the following theorem.  

Theorem(3.15). Let A  be as in (1). Then ( 1)A −� is 

invertible and the inversion of ( 1)A −�  is a tridiagonal matrix 

of the form  

( 1) 1

11

1

1

1

( )

1

1

0 1

( 1)
1

( 1)

1
( 1)

( 1)

ij

i

ij

i

ij

n

nn

B A

b
a

b for i j

a a
b for i j n

a

a
b for i j

a

a
b

a

− −

−

−

−

=


 −= −
 = − >

 − += = < = < −

 = − =

−


− =
 −

�

 

Proof. The proof is similar to theorem (3.3). 

Theorem(3.16). The 
pl norm of ( 1)A −�  is  

( )

1

( 1)
( 1)

2

(2 1) 2 1
( .

1

p
n p np p

p p

a a n a n
A

a

− + − −
−

−

 + − + + − =
 − 

�  

Proof. The proof is similar to theorem (3.5). 

Theorem(3.17). Let D  is a block diagonal matrix of the 

form 
11 22

( , , , )
mm

D diag A A A= … , where each
ii

A , for

1, 2, ,i m= …  is defined as follows 

( 1) ( 1) ( 1)

( 1) ( 1) 1 ( 1) 1

( 1) ( 1) 1 1

.
ii

i n i n i n

i n i n i n

i n i n in

a a a

a a a
A

a a a

− − −

− − + − +

− − + −

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 

Then we have 

1

(1) det( ) det
m

ii

i

D A
=

= ∏  

2

2

( 1)( 2)

1 ( 1)2

1

( 1)( 2) ( 1)

( 1) 2

( 1)

( 1) ,

m
n n m

n i n

i

m n n m m n

m n

a a a

a a

− −
− −

=

− − + −
−

 
= − 
 

= −

∏
 

1 1 1 1

11 22(2) ( , , , )mmD diag A A A
− − − −= …

( )1 1 2 1 ( 1) 1, , , , .n n n ndiag A a A a A a A− − − − − − − −= …  

Proof. For block diagonal matrix 
11 22( , , , )mmD diag A A A= … , 

we have 

11 22

1 1 1 1

11 22

1

(1) det det .det . .det

det , (2) ( , , , ) .

mm

m

ii mm

i

D A A A

A D diag A A A− − − −

=

=

= =∏

…

…
 So we have 

1

( 1) ( 1) ( 1)

( 1) ( 1) 1 ( 1) 1

1

( 1) ( 1) 1 1

det( ) det( )

det

m

ii

i

i n i n i n

i n i n i nm

k

i n i n in

D A

a a a

a a a

a a a

=

− − −

− − + − +

=
− − + −

=

 
 
 =
 
 
  

∏

∏
⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

1 1

( 1) 1 2

1

1 1

1 1 1

1

det ( ) .1

1

m
i n

k

n

a a

a a a

a a

−

=

−

  
  
  
  =
  
  
  

  

∏

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

 

From definition of A as we see in (1) and its determinant 

from theorem (3.7) we have 

2

2

2

2

( 1)

1

( 1)( 2)

1 ( 1)2

1

( 1)( 2) ( 1)(( 1) 1)

( 1) 2 2

( 1)( 2) ( 1)

( 1) 2

det( ) det( )

( 1)

( 1)

( 1) .

n

m
Hi n

i

m
n n m

n i n

i

m n n m m n

m n

m n n m m n

m n

D a a

a a a

a a

a a

−

=

− −
− −

=

− − − − ++−

− − + −
−

=

 
= − 
 

= −

= −

∏

∏

�

 



 Applied and Computational Mathematics 2015; 4(2): 47-52 52 

 

Also for obtaining the inversion of each 
ii

A  we have  

1
( 1) ( 1) ( 1)

( 1) ( 1) 1 ( 1) 1

1

( 1) ( 1) 1 1

1

1 1

( 1) 1 1 2

1 1

( 1) 1

1 1 1

1

( ) 1

1

.

i n i n i n

i n i n i n

ii

i n i n in

i n

n

i n

a a a

a a a
A

a a a

a a

a a a

a a

a A

−− − −

− − + − +
−

− − + −

−

− −

−

− − −

 
 
 =
 
 
  

 
 
 
 =
 
 
 
 

=

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

…

⋮ ⋮ ⋮ ⋮

⋯

 

So we have 

( )
1 1 1 1

11 22

1 1 2 1 ( 1) 1

( , , , )

, , , ,

mm

n n n n

D diag A A A

diag A a A a A a A

− − − −

− − − − − − − −

=

=

…

…
 

Thus the proof is completed.  

Corrolary(3.18). Let A  is a block diagonal matrix of the 

form 
11 22( , , , )mmD diag A A A= … , where 

ii
A  be as in (1). Then 

we have 

( 1)( 2)

1 2

1

( 1)( 2)

( 1) 2

(1) det( ) det ( 1)

( 1) ,

m
n nm

n

ii

i

m n n

m n

D A a a

a a

− −
−

=

− −
−

 
= = − 

 

= −

∏
 

( )

1 1 1 1

11 22

1 1 1

(2) ( , , , )

, , , .

mmD diag A A A

diag A A A

− − − −

− − −

=

=

…

…
 

Proof. The result is concluded from theorem (3.17).  

Example(3.19). Let 
11 22( , )D diag A A= , in exact  

1 1

1 2

3 3 3

3 4 4

3 4 5

1 1 1 0 0 0

1 0 0 0

1 0 0 0

0 0 0

0 0 0

0 0 0

a a

a a
D

a a a

a a a

a a a

 
 
 
 
 
 

=  
 
 
 
 
 
  

. 

According to theorem (3.17) we get 

11 22

2 9 2 4 11

det( ) det det

[ ( 1) ].[ ( 1) ] ( 1) ,

D A A

a a a a a a a

=

= − − = −
 

1 1 3 1

11 11( , )D diag A a A
− − − −=

1 0 1 0
31 1 1 1 1

1 , 1 .
1 1

1 1 1 1
0 0

a a

a a a
diag

a a a a a a

a a a a

    
    − −
    −+ − + −    = − −    − −
    − −            

 

4. Conclusion 

In this paper we investigated some properties of a new 

special matrix. We found remarkable relations about this 

matrix. We saw that this matix is positive definite and has a 

tridiagonal inversion. Also its inversion is a symmetric 

matrix. In addition, diagonal matrices that their entries are 

theses matrices have interesting property too. 
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