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Abstract: The purpose of this study is to determine the effect of first order reactant of MHD fluid turbulence for four-point
correlations earlier than the ending phase. Three and four point correlation equations are obtained. The correlation equations are
changed to spectral type by their Fourier-transform. By neglecting the quintuple correlations in comparison to the fourth order
correlation terms. As a final point integrating the energy spectrum over all wave numbers and we obtained the energy decompose
rule of MHD turbulence for magnetic field fluctuations due to the effect of first order reactant and the result has been shown

graphically.
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1. Introduction

The introduction of the Chemical reactions occur in the gas
phase, in solution in a variety of solvents, at gas-solid and
other interfaces, in the liquid state, and in the solid state.
Chemical kinetics deals with the rates of chemical reactions
and with how the rates depend on factors such as
concentration and temperature. Such studies are important in
providing essential evidence as to the mechanisms of chemical
processes. Chemical reactions occur in solution in a variety of
solvents, at gas-solid and other interfaces, in the liquid state.
Here we apply on MHD turbulence. Deissler (1958, 1960)
developed “A theory decay of homogeneous turbulence for
times before the final period”. Using Deissler’s theory Kumar
and Patel (1974) first order reactant in homogeneous
turbulence before the final period of decay consideration.
Kumar and Patel also discussed (1975) the first order reactant
in homogeneous turbulence before the final period for the case
of multi-point and multi-time. Sarker and Kishore (1991)
studied the decay of MHD turbulence before the final periods.
Bkar Pk ef al (2012) studied the decay of energy of MHD
turbulence for four point correlation. Islam and Sarker (2001)
discussed the first- order reactant in MHD turbulence before
the final period of decay for the case of multi-point and
multi-time. Chandrasekhar (1951) studied the invariant theory
of isotropic turbulence in magneto-hydrodynamics. Bkar Pk et

al (2013a) furthermore considered the first order reactant in
homogeneous turbulence prior to the ultimate phase of decay
for four point correlation in presence of dust particle. Corrsin
(1951) considered the spectrum of isotropic temperature
fluctuations in isotropic turbulence. Bkar Pk et al (2013b)
further calculated the decay of MHD turbulence before the
final period for four-point correlation in a rotating system.
Hossain et al (2014b) studied the homogeneous fluid
turbulence before the final period of decay for four-point
correlation in a rotating system for first-order reactant. Bkar
Pk et al (2014a) also discussed the first-order reactant of
homogeneous dusty fluid turbulence prior to the final period
of decay in a rotating system for the case of multi-point and
multi-time at four-point correlation. Azad et al (2011)
established the Statistical theory of certain distribution
functions in MHD turbulent flow for velocity and
concentration undergoing a first order reaction in a rotating
system. Funada et al (1978) “The effect of coriolis force on
turbulent motion in presence of strong magnetic field.”

Most of authors considered two and three point correlation
equations for first order reactant and solved these equations
after neglecting the fourth and higher order correlation terms.
In this paper, the turbulence for three point correlations is
generalized to some extent in order to analyze the four- point
correlation due to first order reactant of MHD turbulence at
higher Reynolds numbers. In this case, the quadruple
correlation terms in the three- point correlation are retained
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and in addition, a four- point correlation equation is
considered. Following Deissler’s approach we studied the
effects of first order reactant of MHD turbulence before the
final period for four- point correlation system. The effects of
the decay law of first order reactant for four point correlation
comes out to be in the form

(17)=a i) B =1, HCU 1)+ D=1 P lexpERE ~1)],

where <h2 > denotes the total energy of first order reactant

and ¢ is the time, 4, B, C and D are arbitrary constants
determined by initial conditions and R is the chemical
reaction.

In this research paper the effects of chemical reaction in
magnetic field fluctuation of MHD turbulence for four point
correlations are graphically discussed. It is observed that
energy decay increases with the decreases of chemical
reaction and maximum if the chemical reaction is absent.

2. Material and Methods

To locate effect of first order reactant for four point
correlation equation, we obtain the momentum equation for
first order reactant of MHD turbulence at the point p and the
induction equation of magnetic field fluctuation at
p',p"and p" as
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where w=p/p+ 1/2<h>2 is the total MHD pressure,
p(X,t) = hydrodynamic pressure,
0 = fluid density,

P = V s the Magnetic Prandtl number,
M)

V = Kinematics viscosity,

A = Magnetic diffusivity,

h; (x,t) =Magnetic field fluctuation,

u, (%,t) = Turbulent velocity,

t is the time, X, is the space co-ordinate and repeated
subscripts are summed from 1 to 3 .

Multiplying equation (1) by hl h;’h;:: (2) by u, /’l”/’l”’ 3)
by u,hh (4) by ulhihj

we than taking the space or time averages or ensemble average.

m

and adding the four equations,

2
%4.“ Oul _hkﬂ:_ﬁ_w+ 97u, -Ru, (1) Space or time averages denoted by |...... ) and ensemble
ot axk 0x,, 0x,  0x,0x
average denoted by< ........... ) .
We get,
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into equation (5) and then following nine dimensional Fourier
transforms as [ Egs.(7-13) in Bkar Pk et al., 2013Db]

(uih; (N (7)) =

J | [lavkhehe ek v,
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etc and interchange of point’s p’ and p etc, in the subscripts
with the facts
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and then taking contraction of the indices i and j we obtain the
spectral equation is
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Taking derivative of equation (1) at p, with respect to X, we have,
a’w a9’
= ~h/h
0x,0x, 0x,0x, (e =hihy) ©)

Multiplying equation (1) at p, (9) by hi'h;_' h", then taking time averages and writing the equation in terms of the independent

. I n
variables 7,7 ,r  we have,

(KK, +K K} +K K} +KK, +KK| +K|K} +K]K, +K/K, +K]K} +K[K}) —— -
Vo -vivyyiys) (10)
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Equation (10) can be used to eliminate (JV,V,’VZ) from L[(1+PM YK +K'2)+2pMKK']W

equation (1) at p, (8). Equation (8) and (10) are the spectral Pu
equation of first order reactant corresponding to the four—point
correlation. =i (K +K) (@@ B8)-i(K, +K) (BB.BE) -
The spectral equations corresponding to the three-point
correlation are taking by contraction of the indices i and j are +i(k, +k, (@A BB) +ilk, + k) (yadBB)
M (11)
b +ilk, +k)OBB)
o (@BB)+
and
=B = (kiky +kiky + ki + ik (7 + K21+ 2k KD@A BB - aA BB (12)

Using six dimensional Fourier transforms of the type as mentioned [Eqs. (19-24) in Bkar Pk et al., 2013b]
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Acrelation between ggf g/ Brand &Y.V iV be able to be obtained by letting #=0 in equation (7) and comparing the result

with equation (14), we can write
(ad (E),B(E),BJ(E» =[ (a vl (k)> expli(ir + K + K kdidic (15)
Taking contraction of the indices the spectral equation corresponding to the two-point correlation equation is

slool)+rloail) =2i{ansil) ~(@sa )y (16)

where ¢,¢; and a@¢ are defined by

<h heh! ()} _ a¢k¢ t)>exp 1kr)jk (18)
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The relation between ai¢k¢"f (B and ¢1 ﬂl.'ﬁ_;' is

and obtained by letting 17 =0 in equation (13) and comparing
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the result with the equation

<wm®wg»=7T@ﬂ@kﬁwmmm5+ﬁfhaﬁ

—00 —00

we get
(aa8l) = [ asl)alche

3. Neglecting Fifth-Order Correlation
Terms

(19)
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Neglecting all the terms on the right side of equation (8) and
integrating between £, and ¢ we get

(avy,va)=(ayyiys), expl— o “i+ py)
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For little values of k, k' and k" , <44;/iyjy,g>l is the

stationary value of <¢1 V. y;’y’n'l'> at =

Substituting of equations (12), (15), (20) in equation (11)
we get,
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Although continuity equation satisfied the conditions. This
is one of the several assumptions made concerning on the

initial conditions that all )" have been assumed independent

of k" at t,; the entire requirement of primary turbulence is
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complicated; the assumptions for the initial conditions made
here in are in part on the basis of effortlessness. Substituting
dk" = dk|dkydk} and integrating with respect to k|, k)

and k3 , we get
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\ [v(t- tl)(l TPy )]

[aI]eXp{—
Pm

.

_v(t-tpd+py)

v(t=t,)A+py) | (1+2py k2 +K2)  2py kK
L= {( (?T)EM)z )+ P )zHexp{‘R(t—tl)}

(l+pM

(1+2py )i + k'z) 2pykk

Wil p{ Pu

(4 o] oy )H exp{-R(t - 1,)}

Jaw) |
¥ AP W) 1

Allowing for only the expressions connecting [b], and

[c], and then integration of equation (22) with respect to time.
The substituting of equation (19) in equation (16) and setting
H=27k¢,¢, in
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where 50 is a constant depending on the preliminary

conditions for the supplementary bracketed quantities in
equation (24), we get,

7
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dk' = =271k'*d(cos 8)dk'
kk' = kk'cos 8,8 isthe angle betweenk andk'  and
carrying out the integration with respect to & ,we get,
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where G and H are the energy transfer function and the
magnetic energy spectrum function respectively. In order to
make further calculations, an assumption must be made for the

forms of the bracketed quantities with the subscripts 0 and 1 in
equation (24) which depends on the initial conditions.

(25)

] 12
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where w:[v(t_tl)(l"'plw)]z Integrating Eq. (27) with
Py
respect to k', we have,

G=G, +G, exp{- R(t - 1,)} (28)
105
Gpoo TGN ] V()4 2py )k
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and
G,=G,+G, +G, +G, (30)

The quantity G p represents the transfer function arising

due to consideration of magnetic field at three point
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correlation equation; Gy arises from consideration of first ~and homogeneity. From (24),
. . . We get,
order reactant for four—point correlation equation has been

defined [Eq. (40) in Bkar Pk et al., 2013(b)] = exp[_ W (¢ _t"):|J.Gexp[— Wt —1,)

. di+ I (k) exp - 201
Integration of Eq. (29) over all wave numbers shows that Py ’

Pu Pu

J(k)=Ngk?/7m, is a constant of integration and can be

obtained as by Corrsin [1951]
so we obtained,

jG.d% =0 31
0

G is a measure of transfer of energy function and the
numbers must be zero it satisfies the conditions of continuity
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Equation (33) can be integrated above every wave numbers Therefore from equation (34)
to give the whole magnetic turbulent energy. That is
hh %
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Li=0,+0,+0c+0;, L, =0, +0; +0;

0,,0,,0,,0,,05,0,0, are non dimensional constant and are given bellow
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159 , 15.7(15=6py +21p°m) .
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7p°m
(1+py) =21 +2py)7"
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Thus, the first order reactant of MHD turbulence for 8
four-point correlation can be written as

hi=t0=t1=0.5

W) = At =32 +B(t—t.) 6 h2=t0=ti=1
(n”) = At -10) (t=%) (36) h3=t0=t1=1.5
+[C(t—t) ™2 +D(t—t,) """ Jexp{-R(t - t,)} " hd=t0=t1=2
& 4 h5=0=t1=2.5

If the chemical reaction is absent then, we get
R=1
<h2> = A(t—t,) 2 +B(t—t,)
(37

+ [C(t _ tl)—15/2 + D(t _ tl)—17/2]

2 4 6 fimect) 8 10

Fig. 3. Effects of energy decay curves of equation (36) for R=1

This is the decay of MHD turbulence for four-point
correlation. This is the same as [Bkar Pk et al.2012].

4. Results and Discussion 8

T T T

8 MEp=ERR0S
5 B h2=p=g=
h1=t0=t1=0.5 h3=p=n=1 35
B h2=t0=t1=1 A pé=p=g =2
h3=t0=t1=1.5 ‘&4 p3=D=g=25
A he=t0=t1=2 A
t 4 »5=t0=t1=2.5
2 R=0.5
2 R=3
D L
2 - 6 8 10
o - . : thed
2 4 6. 8 10 "
Time(t) Fig. 4. Effects of energy decay curves of equation (36) for R=0.5.
Fig. 1. Energy decay curves of equation (36) for R=3. 8
o : : 0= 05
3 M =t0=t1=0.5 6 h2=p=3=)
6 h2=th=t1=1 =p=g=) 5
h3=t0=t1=1.5 .
A hé=t0=t1=2 4
= 4 h5=t0=t1=2.5 v
2 R=2 2
oL : : : 0
2 4 6 3 10 2 4 6 8 10
time(t) tineds

Fig. 2. Effects of energy decay curves of equation (36) for R=2. Fig. 5. Energy decay curves of equation (36) or (37) for R=0.
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Here A1, h2, h3, h4 and kS are solutions of equation (36) in
the chemical reaction at ¢,=¢ =0.5, 1, 1.5, 2, 2.5

corresponding with R =3, 2, 1, 0.5 and 0.0, which indicated in
the Fig.1, Fig.2, Fig.3, Fig.4 and Fig.5 respectively. In the
clean fluid 41, A2, h3, h4 and kS5 are also solution curves of
equation (37) which indicated in Fig.5.

If the quadruple and quintuple correlations were not
neglected, than more terms in negative higher power of
(t—t,) would be added to the equation (36), and for large

times the last terms in the equations (36), becomes negligible,
leaving the -3/2 power decay law for the final period in the
first order chemical reaction. From Figure.1-5, we watch that
energy decay curves successively increased for decreasing the

values of M and maximum at the point where R is equal to zero.

We conclude that the effect of first order reactant is most
important that is in the present of chemical of magnetic field
fluctuation the energy decay increases with the decreases of R
and maximum for clean fluid that is for R=0.
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