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Abstract: The purpose of this study is to determine the effect of first order reactant of MHD fluid turbulence for four-point 

correlations earlier than the ending phase. Three and four point correlation equations are obtained. The correlation equations are 

changed to spectral type by their Fourier-transform. By neglecting the quintuple correlations in comparison to the fourth order 

correlation terms. As a final point integrating the energy spectrum over all wave numbers and we obtained the energy decompose 

rule of MHD turbulence for magnetic field fluctuations due to the effect of first order reactant and the result has been shown 

graphically. 
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1. Introduction 

The introduction of the Chemical reactions occur in the gas 

phase, in solution in a variety of solvents, at gas-solid and 

other interfaces, in the liquid state, and in the solid state. 

Chemical kinetics deals with the rates of chemical reactions 

and with how the rates depend on factors such as 

concentration and temperature. Such studies are important in 

providing essential evidence as to the mechanisms of chemical 

processes. Chemical reactions occur in solution in a variety of 

solvents, at gas-solid and other interfaces, in the liquid state. 

Here we apply on MHD turbulence. Deissler (1958, 1960) 

developed “A theory decay of homogeneous turbulence for 

times before the final period”. Using Deissler’s theory Kumar 

and Patel (1974) first order reactant in homogeneous 

turbulence before the final period of decay consideration. 

Kumar and Patel also discussed (1975) the first order reactant 

in homogeneous turbulence before the final period for the case 

of multi-point and multi-time. Sarker and Kishore (1991) 

studied the decay of MHD turbulence before the final periods. 

Bkar Pk et al (2012) studied the decay of energy of MHD 

turbulence for four point correlation. Islam and Sarker (2001) 

discussed the first- order reactant in MHD turbulence before 

the final period of decay for the case of multi-point and 

multi-time. Chandrasekhar (1951) studied the invariant theory 

of isotropic turbulence in magneto-hydrodynamics. Bkar Pk et 

al (2013a) furthermore considered the first order reactant in 

homogeneous turbulence prior to the ultimate phase of decay 

for four point correlation in presence of dust particle. Corrsin 

(1951) considered the spectrum of isotropic temperature 

fluctuations in isotropic turbulence. Bkar Pk et al (2013b) 

further calculated the decay of MHD turbulence before the 

final period for four-point correlation in a rotating system. 

Hossain et al (2014b) studied the homogeneous fluid 

turbulence before the final period of decay for four-point 

correlation in a rotating system for first-order reactant. Bkar 

Pk et al (2014a) also discussed the first-order reactant of 

homogeneous dusty fluid turbulence prior to the final period 

of decay in a rotating system for the case of multi-point and 

multi-time at four-point correlation. Azad et al (2011) 

established the Statistical theory of certain distribution 

functions in MHD turbulent flow for velocity and 

concentration undergoing a first order reaction in a rotating 

system. Funada et al (1978) “The effect of coriolis force on 

turbulent motion in presence of strong magnetic field.” 

Most of authors considered two and three point correlation 

equations for first order reactant and solved these equations 

after neglecting the fourth and higher order correlation terms. 

In this paper, the turbulence for three point correlations is 

generalized to some extent in order to analyze the four- point 

correlation due to first order reactant of MHD turbulence at 

higher Reynolds numbers. In this case, the quadruple 

correlation terms in the three- point correlation are retained 
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and in addition, a four- point correlation equation is 

considered.  Following Deissler’s approach we studied the 

effects of first order reactant of MHD turbulence before the 

final period for four- point correlation system. The effects of 

the decay law of first order reactant for four point correlation 

comes out to be in the form 
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where 2h  denotes the total energy of first order reactant 

and t is the time, A, B, C and D are arbitrary constants 

determined by initial conditions and R is the chemical 

reaction. 

In this research paper the effects of chemical reaction in 

magnetic field fluctuation of MHD turbulence for four point 

correlations are graphically discussed. It is observed that 

energy decay increases with the decreases of chemical 

reaction and maximum if the chemical reaction is absent. 

2. Material and Methods 

To locate effect of first order reactant for four point 

correlation equation, we obtain the momentum equation for 

first order reactant of MHD turbulence at the point p and the 

induction equation of magnetic field fluctuation at 

andp,p ′′′ p ′′′ as 
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where 
2

h2/1/p += ρω is the total MHD pressure, 

)t,x̂(p = hydrodynamic pressure, 

ρ = fluid density, 

λ
ν=MP  is the Magnetic Prandtl number, 

=ν  Kinematics viscosity, 

=λ  Magnetic diffusivity, 

=)t,x(h i Magnetic field fluctuation, 

=)t,x̂(u k
Turbulent velocity, 

t is the time, kx is the space co-ordinate and repeated 

subscripts are summed from 1 to 3 . 

Multiplying equation (1) by mji hhh ′′′′′′  (2) by mjl hhu ′′′′′ (3) 

by mil hhu ′′′′
 
(4) by jil hhu ′′′  and adding the four equations, 

we than taking the space or time averages or ensemble average. 

Space or time averages denoted by ( ).......  and ensemble 

average denoted by ........... . 

We get, 
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into equation (5) and then following nine dimensional Fourier 

transforms as [ Eqs.(7-13) in Bkar Pk et al., 2013b] 
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etc, in
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with the facts 
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and then taking contraction of the indices i and j we obtain the 

spectral equation is 
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Taking derivative of equation (1) at p, with respect to lx  we have, 
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Multiplying equation (1) at p, (9) by ,mji hhh ′′′′′′ then taking time averages and writing the equation in terms of the independent 

variables r , r ′ , r ′′  we have, 
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Using six dimensional Fourier transforms of the type as mentioned [Eqs. (19-24) in Bkar Pk et al., 2013b] 
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the result with the equation 
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3. Neglecting Fifth-Order Correlation 

Terms 
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Although continuity equation satisfied the conditions. This 
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initial conditions that all 
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of k ′′ at 1t ; the entire requirement of primary turbulence is 
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integration of equation (22) with respect to time. 
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where G and H are the energy transfer function and the 

magnetic energy spectrum function respectively. In order to 

make further calculations, an assumption must be made for the 
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and 

4321 γγγγγ GGGGG +++=         (30) 

The quantity βG  represents the transfer function arising 

due to consideration of magnetic field at three point 



16 M. Abu Bkar Pk et al.:  Effects of First-Order Reactant on MHD Turbulence at Four-Point Correlation  

 

correlation equation; γG arises from consideration of first 

order reactant for four–point correlation equation has been 

defined [Eq. (40) in Bkar Pk et al., 2013(b)] 

Integration of Eq. (29) over all wave numbers shows that 

0.
0
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kdG                              (31) 

G is a measure of transfer of energy function and the 
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and homogeneity. From (24), 
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Integrating with respect to time, we get, 
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Equation (33) can be integrated above every wave numbers 

to give the whole magnetic turbulent energy. That is  
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654321 ,,,,, QQQQQQ ,
7Q  are non dimensional constant and are given bellow 
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Thus, the first order reactant of MHD turbulence for 

four-point correlation can be written as  

)}tt(Rexp{])tt(D)tt(C[
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   (36) 

If the chemical reaction is absent then, we get 
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2
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−+−+
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    (37) 

This is the decay of MHD turbulence for four-point 

correlation. This is the same as [Bkar Pk et al.2012]. 

4. Results and Discussion 

 
Fig. 1. Energy decay curves of equation (36) for R=3. 

 

Fig. 2. Effects of energy decay curves of equation (36) for R=2. 

 

Fig. 3. Effects of energy decay curves of equation (36) for R=1 

 

Fig. 4. Effects of energy decay curves of equation (36) for R=0.5. 

 

Fig. 5. Energy decay curves of equation (36) or (37) for R=0. 
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Here h1, h2, h3, h4 and h5 are solutions of equation (36) in 

the chemical reaction at 10 tt = =0.5, 1, 1.5, 2, 2.5 

corresponding with R =3, 2, 1, 0.5 and 0.0, which indicated in 

the Fig.1, Fig.2, Fig.3, Fig.4 and Fig.5 respectively. In the 

clean fluid h1, h2, h3, h4 and h5 are also solution curves of 

equation (37) which indicated in Fig.5. 

.If the quadruple and quintuple correlations were not 

neglected, than more terms in negative higher power of 

)tt( 1−  would be added to the equation (36), and for large 

times the last terms in the equations (36), becomes negligible, 

leaving the -3/2 power decay law for the final period in the 

first order chemical reaction. From Figure.1-5, we watch that 

energy decay curves successively increased for decreasing the 

values of M and maximum at the point where R is equal to zero. 

We conclude that the effect of first order reactant is most 

important that is  in the present of chemical of magnetic field 

fluctuation the energy decay increases with the decreases of R 

and maximum for clean fluid that is for R=0. 
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