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Abstract: A novel extension of the cubic Bézier curve with two shape parameters is presented in this work. The proposed 

curve is still a cubic polynomial model, which has simpler structure than other similar models. The proposed curve has the same 

properties with the usual cubic Bézier curve and its shape can be adjusted by altering values of the two shape parameters while 

the control points are fixed. With the two shape parameters, the proposed curve can approach to its control polygon farther or 

closer. The corresponding surface with four shape parameters has the similar properties with the proposed curve and enjoys the 

shape adjustable property. 
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1. Introduction 

In Computer Aided Geometric Design (CAGD), the cubic 

Bézier curve and surface have been widely used for geometric 

modeling. However, when the control points are given, the 

shapes of the usual cubic Bézier curve and surface cannot be 

changed. With the development of geometric design industry, 

shapes of curves and surface often need to be changed freely. 

Hence, shapes of the usual cubic Bézier curve and surface 

cannot be modified limit their practical applications in 

geometric modeling. For relieving the default of the usual 

cubic Bézier curve and surface, the Bézier-like curves and 

surfaces with shape parameters have been paid more and more 

attention by many researchers.  

At present, in order to introduce shape parameters to the 

usual cubic Bézier curve and surface, the most commonly 

used methods have two kinds. One is to construct the quasi 

cubic Bézier curves and surfaces with shape parameters based 

on the space with trigonometric or hyperbolic functions, such 

as [1-8], another is to construct the high-degree Bézier curves 

and surfaces with shape parameters by increasing the degree 

of the Bernstein basis, such as [9-14]. Although those methods 

can effectively realize the shape adjustment of the curves and 

surfaces by altering the values of the shape parameters, the 

structure complexity is thereupon increased. The Bézier curve 

and surface with multiple shape parameters of the same degree 

[15] was a novel method, but the curve and surface did not 

have the strict symmetry that the usual Bézier curve and 

surface have. The main purpose of this work is to present 

another novel extension of the cubic Bézier curve and surface 

with shape parameters. The shape of the proposed curve and 

surface can be adjusted by altering values of the shape 

parameters when the control points are fixed. More important, 

the proposed curve and surface are still cubic polynomial 

models and has the same properties with the usual cubic 

Bézier models. 

The rest of this paper is organized as follows. In Section 2, 

the cubic Bézier basis with two shape parameters (αβ-Bézier 

basis for short) is constructed, and some properties of the basis 

are given. In Section 3, the corresponding curve with two 

shape parameters (αβ-Bézier curve for short) is defined, the 

properties of the αβ-Bézier curve are discussed and effects of 

the shape parameters on αβ-Bézier curve are studied. In 

Section 4, the corresponding surface with four shape 

parameters (αβ-Bézier surface for short) is presented. A short 

conclusion is given in Section 5. 

2. αβ-Bézier Basis 

The construction process of a class of cubic Bézier basis 

with two shape parameters α and β (αβ-Bézier basis for short) 

are given as below. 

Suppose the αβ-Bézier basis will be constructed is 

expressed as follows, 
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[ ] 2 3

0 1 2 3( ) ( ) ( ) ( ) 1f t f t f t f t t t t M =       (1) 

where [0, ]t α∈ (0 1)α< ≤ , and M  is an undetermined 

4 4×  matrix. 

Derivation calculus to Eq. (1), then 

[ ] 2

0 1 2 3( ) ( ) ( ) ( ) 0 1 2 3f t f t f t f t t t M′ ′ ′ ′  =      (2) 

The αβ-Bézier basis is hoped to satisfy the similar 

properties with the usual cubic Bernstein basis functions at 

the end point. Let 0t =  and t α=  in Eq. (1) and Eq. (2) 

respectively, then 

[ ] [ ]1 0 0 0 1 0 0 0 M=            (3) 

[ ] 2 3
0 0 0 1 1 Mα α α =          (4) 

[ ] [ ]0 0 0 1 0 0 Mβ β− =         (5) 

[ ] 2
0 0 0 1 2 3 Mβ β α α − =        (6) 

From Eq. (3) to Eq. (6), then 

2 3

2

1 0 0 0 1 0 0 0

0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 2 3

M
α α α

β β
β β α α

   
   
   =
   −
   −   

    (7) 

Solving Eq. (7) and taking the result to Eq. (1), the 

αβ-Bézier basis can be defined as follows. 

Definition 1. For two arbitrary selected real values of 

α (0 1)α< ≤  and β (0 3)β< ≤ , the following four functions 

of t (0 )t α≤ ≤  are called the cubic Bézier basis with two 

shape parameters α and β (αβ-Bézier basis for short), 

( ) ( ) ( )
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 = −

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
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f t t t t
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     (8) 

Theorem 1. The αβ-Bézier basis defined as Eq. (8) has the 

following properties, 

(a) Nonnegativity: ( ) 0
i

f t ≥  ( 0,1,2,3)i = . 

(b) Degeneration: For 1α =  and 3β = , the αβ-Bézier 

basis degenerates into the usual cubic Bernstein basis. 

(c) Monotonicity: For fix [ ]0,t α∈  and (0,1]α ∈ , 0
( )f t  

and 3
( )f t  are monotonically decreasing about β , 1

( )f t  

and 2
( )f t  are monotonically increasing about β . 

(d) Partition of unity:  

0 1 2 3
( ) ( ) ( ) ( ) 1f t f t f t f t+ + + ≡ . 

(e) Symmetry:  

3
( ; , ) ( ; , )

i i
f t f tα β α α β−= −  ( 0,1,2,3)i = . 

(f) Properties at the endpoints: 

0 1 2 3

0 1 2 3

(0) 1, (0) (0) (0) 0

( ) ( ) ( ) 0, ( ) 1

f f f f

f f f fα α α α
= = = =

 = = = =
        (9) 

0 1

2 3

0 1

2 3

(0) , (0) ,

(0) 0, (0) 0,

( ) 0, ( ) 0,

( ) , ( ) .

f f

f f

f f

f f

β β

α α
α β α β

′ ′= − =
 ′ ′= =
 ′ ′= =
 ′ ′= − =

              (10) 

Proof. (a) For 0 t α≤ ≤ , 0 1α< ≤  and 0 3β< ≤ , then 

0tα − ≥ , 3 0αβ− ≥ . From Eq. (8), ( ) 0
i

f t ≥  ( 0,1,2,3)i =  

follow obviously. 

(b) For 1α =  and 3β = , the αβ-Bézier basis can be 

expressed as follows, 

( )
( )
( )
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( ) 3 1
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                 (11) 

Eq. (11) is the expression of the usual cubic Bernstein basis 

exactly, which shows that the αβ-Bézier basis degenerates into 

the cubic Bernstein basis functions when 1α =  and 3β = . 

(c) For [ ]0,t α∈  and (0,1]α ∈ , then  

20

2

d
( ) 0

d

f t
tα

β α
= − − ≤ , 

21

2

d
( ) 0

d

f t
tα

β α
= − ≥ , 

2

2

2

d
( ) 0

d

f t
tα

β α
= − ≥ , 

2

3

2

d
( ) 0

d

f t
tα

α α
= − − ≤ . 

Hence, 
0
( )f t  and 

3
( )f t  are monotonically decreasing 

about β , 
1
( )f t  and 

2
( )f t  are monotonically increasing 

about β .  

By simple deduction, the remaining cases follow obviously.  

Fig. 1 and Fig. 2 show curves of the αβ-Bézier basis for 

different values of α  and β . In Fig. 1, the value of β  is 

set for 3β = , and the value of α  is set for 0.4α = (solid 

lines), 0.8α = (dotted lines) and 1.0α = (dashed lines) 

respectively. In Fig. 2, the value of α  is set for 1.0α = , and 

the value of β  is set for 1.0β = (solid lines), 

2.0β = (dotted lines) and 3.0β = (dashed lines) 

respectively. 
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Figure 1. Curves of the αβ-Bézier basis for different values of α 

 

Figure 2. Curves of the αβ-Bézier basis for different values of β 

3. αβ-Bézier Curve 

3.1. Definition and Properties of the αβ-Bézier Curve 

On the base of the αβ-Bézier basis, the corresponding curve 

with two shape parameters can be defined as follows. 

Definition 2. Given 
i

p ( 0,1,2,3)i =  are four control points 

in 2R  or 3R , for 0 t α≤ ≤ , 0 1α< ≤  and 0 3β< ≤ , then 

3

0

( ) ( )
i i

i

t f t
=

=∑B p                 (12) 

is called the cubic Bézier curve with two shape parameters α 

and β (αβ-Bézier curve for short), where ( )
i

f t ( 0,1,2,3)i =  

are the αβ-Bézier basis defined as Eq. (8). 

Remark 1. The curve defined as Eq. (12) can be 

reparametrized to a new curve by ( ) ( )u uα=R B . Then ( )uR  

is defined on a fixed interval [0,1] . For given control points 

i
p ( 0,1,2,3)i = , both ( )tB  and ( )uB  represent the same 

curve. The curve with ( )tB  is used in the following 

discussion. 

From the properties of the αβ-Bézier basis and definition of 

the αβ-Bézier curve, some properties of the αβ-Bézier curve 

can be obtained as follows. 

Theorem 2. The αβ-Bézier curve defined as Eq. (12) has the 

following properties, 

(a) Terminal properties: The curve interpolates the first and 

the end control points and tangent to the first and the end 

edges of the control polygon, i.e., 

0

3

1 0

3 2

(0)

( )

(0) ( )

( ) ( )

α
β

α β

=
 =
 ′ = −
 ′ = −

B p

B p

B p p

B p p

 

(b) Symmetry: For the same shape parameter 

α (0 1)α< ≤ and β (0 3)β< ≤ , both 
i

p  and 

3 i−p ( 0,1,2,3)i =  define the same curve in a different 

parameterization, i.e., 

0 1 2 3 3 2 1 0
( ; , , , ) ( ; , , , )t tα= −B p p p p B p p p p  

where 0 t α≤ ≤ . 

(c) Geometric invariant and affine invariance: Location and 

shape of the curve depend only on the four control points 

i
p ( 0,1,2,3)i = , the parameter α and β, regardless of the 

choice of coordinate system, i.e., shape of the curve will keep 

unchanged after rotation and coordinate translation. In 

addition, after implementing affine transformation to the 

control points, the new curve will correspond to the same 

affine transformation curve. 

(d) Convex hull property: A curve with ( )tB  must lie 

inside its control polygons span by 
i

p ( 0,1,2,3)i = . 

Proof. (a) From Eq. (9) and Eq. (12), then 

0 0 1 1 2 2 3 3 0
(0) (0) (0) (0) (0)f f f f= + + + =B p p p p p  

0 0 1 1 2 2 3 3 3
( ) ( ) ( ) ( ) ( )f f f fα α α α α= + + + =B p p p p p  

From Eq. (10) and Eq. (12), then 

0 0 1 1 2 2 3 3

0 1 1 0

(0) (0) (0) (0) (0)

( )

f f f f

β β β
′ ′ ′ ′ ′= + + +

= − + = −
B p p p p

p p p p
 

0 0 1 1 2 2 3 3

3 2 3 2

( ) ( ) ( ) ( ) ( )

( )

f f f fα α α α α
β β β

′ ′ ′ ′ ′= + + +
= − + = −

B p p p p

p p p p
 

(b) For the same shape parameter α  (0 1)α< ≤  and 

β (0 3)β< ≤ , from symmetry of the αβ-Bézier basis, then 
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3 2 1 0

0 3 1 2 2 1 3 0

3 3 2 2 1 1 0 0

0 1 2 3

( ; , , , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ; , , , )

t

f t f t f t f t

f t f t f t f t

t

α
α α α α
−

= − + − + − + −
= + + +
=

B p p p p

p p p p

p p p p

B p p p p

 

(c) Because of the parametric form of the curve, this 

property follows obviously. 

(d) This property follows since the αβ-Bézier basis satisfies 

nonnegative property and sums to one which are shown in 

Theorem 1. 

Remark 2. Theorem 2 shows that the αβ-Bézier curve 

inherits the same properties with the usual cubic Bézier curve. 

Particularity, the αβ-Bézier curve degenerates into the usual 

cubic Bézier curve when 1α =  and 3β = . Therefore, the 

αβ-Bézier curve is an extension of the usual cubic Bézier 

curve. 

Remark 3. There are many cubic Bézier-like curves with 

shape parameters had been constructed by some researchers. 

They introduce the shape parameters through modifying the 

polynomial functions of the usual cubic Bézier curve to 

trigonometric or hyperbolic functions [1-8], or increasing the 

degree of the usual cubic Bézier curve [9-14]. The shapes of 

those curves can be adjusted by altering values of the shape 

parameters, but the structure complexity is thereupon 

increased. Although Xiang, et al [15] constructed a cubic 

Bézier curve with shape parameters of the same degree, the 

curve did not have the strict symmetry that the usual cubic 

Bézier curve has. In contrast with those similar curves, the 

αβ-Bézier curve presented in this work has the following 

characteristic, 

(a) In contrast with the quasi cubic Bézier curve with the 

parameter [1-8], the αβ-Bézier curve is a cubic polynomial 

curve. Hence, structure of the αβ-Bézier curve is simpler than 

those curves based on the space with trigonometric or 

hyperbolic functions. 

(b) In contrast with the high-degree Bézier curve with the 

parameter [9-14], the αβ-Bézier curve is still a cubic 

polynomial model. Hence, formula complexity of the 

αβ-Bézier curve is simpler than those curves constructed by 

increasing the degree of the Bernstein basis functions. 

(c) In contract with the Bézier curve with multiple 

parameters of the same degree [15], the αβ-Bézier curve 

satisfies strict symmetry that the usual cubic Bézier curve has. 

Hence, the αβ-Bézier curve is more suitable in practical 

engineering than the curve didn’t satisfy strict symmetry. 

3.2. Effects of the Shape Parameters on αβ-Bézier Curve 

When the four control points are fixed, shape of the usual 

cubic Bézier curve cannot be changed, while shape of the 

proposed curve can be adjusted by altering values of the shape 

parameter α (0 1)α< ≤  and β (0 3)β< ≤ . Effects of the 

shape parameters on the αβ-Bézier curve approaches to its 

polygon are shown as follows. 

Theorem 3. Suppose 
i

p  ( 0,1,2,3)i =  are not collinear, 

and 
0

p , 
3

p  lie on the same side of edge 
0 3

p p , the shape 

parameters α and β have the following effects on the αβ-Bézier 

curve, 

(a) When β is fixed, the αβ-Bézier curve approaches closer 

to its control polygon as α increases.  

(b) When α is fixed, the αβ-Bézier curve approaches closer 

to its control polygon as β increases 

(c) The αβ-Bézier curve approaches closer to its control 

polygon as α and β increase simultaneously. 

Proof. Let 1 2

2

* +
=

p p
p , from Eq. (12), then 

( )0 1 2 3

4

2 8

α αβ−  − = − − + 
 

*
B p p p p p     (13) 

where 0 1α< ≤ , 0 3β< ≤ . 

Taking the norm in Eq. (13), then 

0 1 2 3

4

2 8

α αβ−  − = − − + 
 

*
B p p p p p    (14) 

From Eq. (14), then 

(a) When β is fixed, since 
4

8

αβ−
 decreases as α increases, 

the αβ-Bézier curve approaches closer to its control polygon 

with the increase of α. 

(b) When α is fixed, since 
4

8

αβ−
 decreases as β increases, 

the αβ-Bézier curve approaches closer to its control polygon 

with the increase of β. 

(c) Since 
4

8

αβ−
 decreases as α and β simultaneously 

increase, the αβ-Bézier curve approaches closer to its control 

polygon with the simultaneous increase of α and β.  

 

Figure 3. Effects of α on the αβ-Bézier curve 

Fig. 3 shows the αβ-Bézier curve corresponding to the same 

control polygon by fixing 2=β  and setting 

0.2,0.4,0.6,0.8,1.0α =  respectively from outside to inside. 

Fig. 4 shows the αβ-Bézier curve corresponding to the same 

control polygon by fixing 0.5α =  and setting 
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0.5,1.0,1.5, 2.0,2.5,3.0β =  respectively from outside to 

inside. 

 

Figure 4. Effects of β on the αβ-Bézier curve 

Fig. 5 shows the αβ-Bézier curve corresponding to the same 

control polygon by setting 0.2, 1.0α β= = , 0.4, 1.5α β= = , 

0.6, 2.0α β= = , 0.8, 2.5α β= = , 1.0, 3.0α β= =  

respectively from outside to inside. 

 

Figure 5. Effects of α and β on the αβ-Bézier curve 

 

Figure 6. Watermelon-shaped pattern generated by the αβ-Bézier curve 

The watermelon-shaped pattern generated by altering 

values of the shape parameters α and β is shown in Fig. 6. 

4. αβ-Bézier Surface 

Using tensor product, the corresponding surface with four 

shape parameters can be defined as follows. 

Definition 3. Given 
,i j

p ( , 0,1,2,3)i j =  are 4×4 control 

points in 3R , ( )
i

f u (
1

0 u α≤ ≤ , 
1

0 1α< ≤ , 
1

0 3β< ≤ ) and 

( )
j

f v (
2

0 u α≤ ≤ , 
2

0 1α< ≤ , 
2

0 3β< ≤ )  are the basis 

defined according to Eq. (8), then 

3 3

,

0 0

( , ) ( ) ( )i j i j

i j

u v f u f v
= =

=∑∑B p           (15) 

is called the cubic Bézier surface with four shape parameters 

i
α  and 

i
β  ( 1,2)i =  (αβ-Bézier surface for short). 

The αβ-Bézier surface defined as Eq. (15) has symmetry, 

geometric invariant and convex hull property that the usual 

cubic Bézier surface has. Particularity, the αβ-Bézier surface 

degenerates into the usual Bézier surface when 1
i

α =  and 

3
i

β = ( 1,2)i = . When the control mesh is fixed, shape of the 

αβ-Bézier surface can be adjusted by altering values of the 

four shape parameters 
i

α  and 
i

β  ( 1,2)i = . 

Fig. 7 shows the αβ-Bézier surface corresponding to the 

same control mesh by setting different values of the shape 

parameters 
i

α α=  and 
i

β β= ( 1,2)i = , where (a) 

0.5, 1.0α β= = , (b) 1.0, 1.0α β= = , (c) 0.8, 2.0α β= = , 

(d) 0.8, 3.0α β= = . 

 

Figure 7. The αβ-Bézier surface for different values of shape parameters 

5. Conclusions 

As mentioned above, the αβ-Bézier curve not only has the 

same properties with the usual cubic Bézier curve, but also can 

be easily adjusted by altering values of the shape parameters 

when the control points are fixed. More important, the 

αβ-Bézier curve is still a cubic polynomial model, which has 
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simpler structure than other similar models. The αβ-Bézier 

surface also has the same properties with the usual cubic 

Bézier surface and its shape can be adjusted by altering values 

of the shape parameters while the control mesh is kept 

unchanged. Because there is nearly no difference in structure 

between the αβ-Bézier models and the usual cubic Bézier 

models, it is no difficult to adopt the αβ-Bézier models to a 

CAD/CAM system that already uses the usual cubic Bézier 

models.  

For practical applications of αβ-Bézier models in geometric 

modeling, it is clear that some special algorithms need to be 

established. Some interesting results in this area will be 

discussed in the following study. 
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