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Abstract: In this paper, the concept af,g)- inf-sup Q-fuzzy set is generalized and thererafte definedd,p)- inf-sup Q-
fuzzy group and a few of its properties are diseds©n the other hand we give the definition of ubper normal Q- fuzzy
subgroups, and study the main theorem for thisalfe give new results on this subject. Charactgoizaf inf-sup normal Q-
fuzzy subgroups also investigated.
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1. Introduction 5> Preliminaries

The fundamental concept of fuzzy sets was initiaigd o ) )
L.Zadeh[13] in 1965 and opened a new path of thigkio Definition _2.1:[13] Let X be a set. Then a mapping that is
mathematicians, engineers, physicists, chemists mady M :X>[0.1]is cglled a fuzzy subset of X.
others due to its diverse application is variowdd§. The  Definition 2.2[10]Let Q and G be a set and a group
fuzzy algebraic structures play a prominent role if€SPectively. A mapping A:GxQ [0,1] is called Q-fuzzy set

mathematics with wide applications in many othearighes N G- For any Q-fuzzy set Ain G an€{[0,1]. The set U (A1)
such as theoretical physics, computer science, raiont =1X€G/ AX,q)t, g€Q} which is called an upper cut of A.
engineering, information science, coding theorgugrtheory, _ DEfinition 2.3:[9]Let G be any group. A mapping u:
real analyses, hectare theory etc. In 1971, Rokfgfeirst ~©—[0.1]is called a fuzzy group of G if
introduced the concept of fuzzy subgroups, whicls wee 1) u (X’)l/)f max{ 1 (x), 1 (V)}
first fuzzification of any algebraic structures. éfbafter the ~ (2) H () =p () forallx,y€G
notion of different fuzzy algebraic structures swshfuzzy Definition 2.4:[10]A Q-fuzzy set A is called Q-fuzzy
ideals in rings and semi rings etc, have seriostiyied by 97ouP of G if _
mathematicians. In 1965, Zadeh introduced the quiscef (QFGL) : Alxy,q)= Min {A(x,a),A(y.a)}
interval-valued fuzzy sets, where the values of mem (QFG2):A(X',q) =A(x,q)
instead of the real points. (QFG3) : A(x,q)=1 for all x,¢G and €G.

His definitions has been generalized by Anthony and Proposiion 2.LIf uis a Q-fuzzy group of a group G
Sherwood[1]. They introduced the concept of fuzzynmal ~Naving |den_'gty e, then
subgroups also. Mukherjee and Bhattacharya [2@fie the (1) r(x",0)=n(x,q)(ii) n(e,a)< u(x,q) UXeg.
normal fuzzy groups and fuzzy cosets, on the oaed the ~ Proof: itis obivious.
notion of a fuzzy subgroup abelian group was iniced by ~ Definition 2.5 :[10]Let u be a Q-fuzzy group of G. then
Murali and Makambal[5,6]. The concept of Q-fuzzyupds M’ IS called a Q-fuzzy normal group if (xy , @) =p (yx,q)
introduced in [ 8,10,11].The purpose of this pajpgrto bx, y€G )
generalize new definition of()- inf-sup Q-fuzzy groups and ~ Definition 2.6 :[8] Let X be a set then a mapping
using this definition to study some propertiestfis subject. ~ ¥-X*Q—M ([0,1]) is called inf-sup subset of X, where
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M’ ([0,1]) denotes the set of all non empty subs¢ddf] u(x,q)} o B = supp(x,q) o B by (2)
Definition 2.7:[3] Let X be a non empty set andandA be

two inf-sup Q-fuzzy subset of X. Then the intergeetof p Again
and) denoted byinA and defined by inf w(xy.g) O @ < S inf w(x.q), inf ()} o
unA={min{a,b}/ alu(x),bOAX)} for all xOX.The union o) {inf w(x,a), infu(y~a)}y o B
of w and A and denoted byuOA and defined by < S {inf n(x,q), infu(y,q)} o p
pOA={max{a,b}/ alu(x),bOA(x)} for all xOIX. Ang
n

Definition 2.8:Let X be a groupoid that is a set which is
closed under a binary relation denoted multiphcagi. A

supu(xy,g) N o< S {supu(x,q), su .Q)} o
mapping is called(,)- inf-sup Q-fuzzy groupoid if for all Pu(xy.q) fsupp(x.q). supuy.q)} & B

X,y O X, following conditions hold: < S {supu(x,q), supu(y,q)} o B
(1) inf p(xy,q) N a< S{inf u(x,q), infu(y,q)}o B . .
(2)  supu(xy,) N o < S{ supy(x,q), supn(y.a)} o p Hencey is (u)- inf-sup Q-fuzzy group of G.

Definition2.9:.Let G be a group. A mapping:GxQ— Propo_siﬁon 32 If nis an(x,B)— inf-sup Q—fuzzy groupoid
M’ ([0,1] is called &pB)- inf-sup Q-fuzzy group of G if for all Of & infinite group G, themu is ang.p)- inf-sup Q-fuzzy

x,y G, following conditions hold: grclnaup ‘;f G.
1) inf p(xy,q) N o< S{inf u(x,q), infu(y,q)} o roor.
EZ; Supu:()zlyqq)) Na< S{{ sugﬁ(fzq) smﬁléz(?/)é)} g B Let xOG. Since G is finite, x has finite order, say perth
@) inf u(xha) N a<inf (g o p xP=e, where e is the identity of G. Thug % u”*using the
@) supu(xg) N a < supu(x,q)o definition of (@,p)- inf-sup Q-fuzzy groupoid, we have

Note:In definition if p: GxQ—[0,1] thenu(x ,q) O xOG
are real points in [0,1] and also infk ,q)) = supu(x,q) =
u(x,q), XJG and qe Q. Thus definition (2.9) reduces to
definition of (9).. Again

So @,p)- inf-sup Q-fuzzy group is a generalization of). (9

inf p(xq) N a = inf u(xPLq) N a = inf u(x2q) N a < S{inf
r(®2q), n(x.Q)} 0 B

inf n(x*%0) N o = inf pu(x*%x,0) N o < S{inf p(x*%,0), u(x,0)}

. o
3. Main Results P
o ) Then we have
Proposition 3.1:An (o,B)- inf -sup Q-fuzzy subset of a
group G is ¢,p)- inf-sup inf p(x,q) N a < S{inf u(x"3,q), infu(x,q)} o B
Q-fuzzy group iff for all x,y{1G followings are hold. ] o ]
(1) inf u(xyq) N o< S finf u(x.q), infu(y,q)} o B So applying the definition of a(f)- inf-sup Q-fuzzy

) supu(xyLg) N o< S {supu(x,q), supu(y,q)} o p groupoid repeatedly, we have that jirfk™*,q) N a < inf u(x,q)
Proof: At first letp be @,p)- inf-sup Q-fuzzy group of G

and x,y0G. Then Similarly we have s_up(x'l,q) N a < supu(x,q) o B
Thereforeu is (a,p)- inf-sup Q-fuzzy group.
inf p(xyt,0) N a < S {inf u(x,q), infu(y>,q)} o B Proposition 3.4: The Intersection of any twa.)- inf-sup

R . Q-fuzzy groups is alsaw(B)- Inf-sup Q-fuzzy group of G.
= S {inf n(x,), infu(y,a)} o p and Proof : Let A and B be any twaxp)- inf-sup Q-fuzzy

supp(xy%,q) N a < S {supu(x,q), supu(y,a)} o groups of G and x,j G then
= S {supu(x,q), supu(y,q)} o p inf (AnB) (xy*,q) N a =S {inf A(xy™,q),
Conversely, left be ,p)- inf-sup Q-fuzzy subset of G and inf B(xy™*,q)} o B < S {S{ {inf A(x,q),
given conditions hold. Then for albG, we have inf A(x.q)} & B, {inf B(x.q), inf B,q)}}} o p S {S{inf
inf p(e,q)N o = inf u(xxt,g) N a < S{inf u(x,q), infu(x,q)}  AX), inf B(x,q)} o B, S {inf A(x,q), inf B(y,a)}}} op

OB =infu(xq)o p () = S {inf AnB(x,q), inf AnB(,a)} & B @A)
Supp(e,q)N a = supp(xx*,q) N a < S{ supu(x,q), sup Again
n(x,a)} o B =supu(x,q) o p (2)
So sup (AnB) (xy',0) N a = S {sup A(xy',q), sup B(xy",q)} o
' B by definition
inf u(x*,g) N a = inf u(ex*,q) N a < S{inf p(e,q), infu(x,q)} s
_ < S{S{{sup A(x,q), sup A(x,a)}o B, {sup B(x,q), sup
ap=intubxaopby (4 B.al} 0B S (S{sup AxG), sup Bx.)b B, S {sup
And A(X,q), sup B(y,q)}}} a ﬁ

supu(xt,g) N a = supu(ext,q) N o < S{ supp(e,q), sup = S {sup M B(x,q), sup AB(y,a)} o B (4)
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Hence by (3) and (4) and using proposition we saBAs
(0,,B)- inf-sup Q-fuzzy group of G.

Proposition 3.5:1f A is a (a,p)- inf-sup Q-fuzzy group of a
group G having identity e, thémx1X

(1) inf A(x1g) N a =inf A(x,q) op and sup A%.q) N «

=sup A(x,q)o B
(2) inf A(e,q) N a < inf A(x,q) op and sup A(e,gh a =

sup A(x,q)o B

Proof :

(1) As Ais a @,p)- inf-sup Q-fuzzy group of a group G,
Then inf A(x%,q) < inf A(x,q)

Again

inf A(x,q) N a=inf A(xHLg)Na<infAXLG) N a
So
inf A(x%,q) N a =inf A(x,q) o p
Similarly we can prove that
sup A(X%Lq) N o =sup A(X,q)0 B

(2) inf A(e,q) N o = inf A(xxt,g) N a < S{inf A(x,q), inf
AXa)} o

And sup A(e,g)N a = sup A(xx%,q) N o < S{sup A(x,q), Sup
A(xa)} o B

Proposition 3.6: Let p andA be two (,p)- inf-sup Q-fuzzy
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=infAnB(yx,q) o B

Similarly sup (AnB) (xy,q) N o = sup (A0B) (yx,q) o B

This shows that AB is(a,p)- inf-sup normal Q-fuzzy
group of G.

Proposition 4.2: The Intersection of any arbitrary
collection of ,p)- inf-sup normal Q-fuzzy groups of a group
G is also ¢,B)- inf-sup normal Q-fuzzy group of G.

Proof:

Letx,yOGanda O G

inf A(xyt,q) N a = inf A(axya,q) N o by definition
= inf A(axaay0,0) N a
= inf (A(axa,q),A((0'ya)%,q)) N o
< S{inf (A(axa,q), inf A((aya),q))} o p
= S{inf (A(x,0),A((y.Q))} 0 B

Again

sup A(xy%,q) N o = sup Aexya,q) N o by definition
= sup Ag xaatyto,q) N a
= sup (A 'xa,0),A((@yo) ™)) N a
< S{sup (A@'xa,q), SUPA(Eya),q))} o B
= S{ sup (A(x,9).A((y.a)}o B

group of G , G, respectively and let Q be a homomorphism

from G, to G,.. Then

1)  Q@w.q)is @.p)- inf-sup Q-fuzzy group of &

(2) Q(,q)is @,p)- inf-sup Q-fuzzy group of &

Proof : It is trivial

Remark: Ifu is (@,p)- inf-sup Q-fuzzy group of G and K is
subgroup of G then the restriction pfto K(wK) is (o,B)-
inf-sup Q-fuzzy group of K.

4. INF-SUP Normal Q-Fuzzy Group

Definition 4.1 : If pis an @,p)- inf-sup Q-fuzzy group of a
group G thenu is called a ¢,p)- inf-sup normal Q-fuzzy
group of G if for all x,y(0G

inf u(xy,q) N a = inf u(yx,q) op and
supu(xy,q) N a =supp(yx,q)} of

Proposition 4.1: The Intersection of any twa.§3)- inf-sup
normal Q-fuzzy groups of G is alse,ff)- inf-sup normal Q-
fuzzy group of G.

Proof : Let A and B be any twa.,f)- inf-sup normal Q-
fuzzy groups of G. By proposition 3.4/B is ang.,p)- inf-
sup Q-fuzzy group of G.

Let x,y O G then by definition

inf (AnB) (xy,q) N a = S {inf A(xy,q), inf B(xy,q)} op by
definition

= S {inf A(yx,q), inf B(yx,q)} o B

A'is (a,B)- inf normal Q-fuzzy group of G.

5. Conclusion

In this paper, the concept af,f)- inf-sup Q-fuzzy set is
generalized and there after we define@)- inf-sup Q-fuzzy
group and a few of its properties are discussed.
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