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Abstract: This paper investigates the effect of gravitational acceleration on unsteady biomagnetic fluid flow in a channel 

under the influence of a spatially varying magnetic field. The study on biomagnetic fluid under the action of an applied magnetic 

field is important in the development of Biomagnetic Fluid Dynamics (BFD). Most existing studies analyze flows in steady state 

conditions and the effect of gravitational acceleration has not been addressed. For the mathematical model, the Navier-Stokes 

equations, energy equation and an additional term that describes the magnetic force and gravitational effect which is consistent 

with the principles of ferrohydrodynamics (FHD) are employed. The nonlinear governing differential equations are 

non-dimensionalized and then discretized based on a finite difference technique on a staggered grid system. The solution of these 

problems is obtained numerically using pressure correction method with SIMPLE algorithm. For a range of governing 

parameters such as the magnetic number MnF and Richardson number Ri, the numerical results show that the gravitational 

acceleration has a profound effect on both velocity and temperature profiles. The streamlines plotted also show that vortices 

appear near the lower plate where the magnetic source is located. 
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1. Introduction 

Biomagnetic Fluid Dynamics (BFD) is the study of the 

flow of biological fluid in the presence of magnetic field. As 

fluid moves about in a living creature, its flow is influenced by 

the presence of the magnetic field. An example of biomagnetic 

fluid is blood. Tzirtzilakis and Kafoussias [16] stated 

magnetic field is created in blood by the interaction of cell 

membrane, intercellular protein, and hemoglobin molecule 

which is a form of iron oxide existing at a uniquely high 

concentration in mature red blood cells. 

The magnetization property M  is the behaviour of a 

biological fluid when it is exposed to magnetic field. This 

measures how much the magnetic field is affecting the fluid in 

various aspects. There are various equations describing the 

dependence of M  [2, 3, 6, 16, 17]. Mathematical models 

have been developed to investigate BFD. According to the 

model of Haik et al. [7] biological fluids are treated as 

Newtonian, isothermal and consistent with the principles of 

ferrohydrodynamics (FHD). FHD is the study of electrically 

non-conducting magnetic fluids. The mathematical 

formulation based on the principle of FHD was proposed by 

Tzirtzilakis et al. [18]. The flow is three-dimensional and 

isothermal. 

In recent years, studies have been made to analyse the 

effects of magnetic fields and temperature variation in 

biological fluid. An application of this is in using heat in fluid 

in eye therapy. Fertman [5] reported on how magnetic fluid 

was injected to induce hyperthemia in eye treatment. The 

treatment of a group of patients was made possible without 

using anti-inflammatory medication by using this method [5]. 

In a study on wound treatment, it was reported that the 

temperature increased more than 3
o
C after magnetic field was 

applied to a wounded area and the wounds closed after 21 – 26 

days [12]. On similar wounds which were not treated 

magnetically, scabs and ulcers were formed even after 50 days. 

Tzirtzilakis [14] and Tzirtzilakis et al. [15] extended the BFD 

mathematical model of Haik et al. [7]. Their BFD models are 

different from [7] in that they dealt with temperature 

distribution for non-isothermal fluid. Loukopoulos et al. [8] 

and Papadopoulos et al. [11] derived FHD for steady, 

two-dimensional and non-isothermal fluid flow. They found a 

vortex is formed at the lower plate where the magnetic source 

was located. The temperature, skin friction and rate of heat 
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transfer were increasing at the area of magnetic source. 

Tzirtzilakis and Kafoussias [16] presented the flow of heated 

ferrofluid over a linearly stretching sheet in the presence of an 

applied magnetic field due to a magnetic dipole. 

The study of BFD is influenced by the principles of FHD 

and Magnetohydrodynamics (MHD). MHD deals with 

conducting fluids which ignores the effect of polarization and 

magnetization. The mathematical model for blood flow in 

magnetic field consistent with the principles of FHD and 

MHD in a straight rectangular duct was proposed by 

Tzirtzilakis [19]. The applications of the applied magnetic 

field are related to two cases which are a spatially varying 

magnetic field and a constant magnetic field. Tzirtzilakis and 

Loukopoulos [20] studied the laminar biomagnetic fluid flow 

problem while Tzirtzilakis et al. [21] dealt with the turbulent 

biomagnetic fluid flow in a channel under the influence of a 

steady localized magnetic field. When the biofluid enters and 

leaves the locally applied magnetic field, where the gradient of 

the magnetic field strength is high, the magnetization force 

and Lorentz force appear. Therefore, the BFD model for [20, 

21] considered FHD and MHD principles. Two vortices 

appeared at the area of two points where the magnetic field 

started and stopped to apply. In the case of turbulent flow, the 

skin friction and heat transfer were greater compared to the 

laminar flow. The problem of biomagnetic fluid flow under 

the influence of a spatially varying magnetic field was 

developed by Nursalasawati [10]. She assumed the 

magnetisation force was due to FHD interaction. From her 

investigation, the results regarding the velocity showed that 

the presence of magnetic field appreciably influenced the flow 

field. In addition, she considered the Lorentz and 

magnetisation forces due to MHD and FHD interaction. The 

results are similar to the case of FHD interaction only. The 

Lorentz force just gives a small influence to the flow 

behaviours. 

Saha et al. [13] investigated various ranges of Richardson 

number for combined free and forced convection inside a 

two-dimensional multiple ventilated rectangular enclosure. 

The unsteady flow past a uniformly accelerated infinite 

vertical plate in the presence of variable temperature and mass 

flux was proposed by Muthucumaraswamy et al. [9]. The 

results indicated that the velocity increased with increasing 

values of thermal Grashof number or mass Grashof number. 

Various methodologies for numerical solutions are adopted 

in order to solve the biomagnetic fluid flow problems. The 

stream function-vorticity formulation had been used for the 

numerical investigation of the steady biomagnetic fluid flow 

in a channel under a spatially varying magnetic field [8, 14, 

15]. Tzirtzilakis [19] adopted a pressure-linked 

pseudotransient method for solving biomagnetic fluid flow in 

a straight rectangular duct under the action of a uniform or a 

spatially varying magnetic field. In that study, a finite 

difference numerical technique was used for discretization. 

SIMPLE method was used for the problem of biomagnetic 

fluid flow in a curved square duct under the influence of an 

applied magnetic field [11]. 

In the present study, the effect of gravitational acceleration 

on biomagnetic fluid flow in a channel is investigated. The 

flow is considered to be unsteady, two-dimensional, 

non-isothermal, laminar and incompressible. The 

magnetization equation is assumed by a linear equation 

involving the magnetic field intensity *H and temperature 
*T . This model is solved using a finite difference numerical 

technique based on Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE) algorithm on a staggered grid system. 

The result concerning the velocities and temperature fields are 

observed and explained. 

2. Mathematical Model 

We consider the unsteady, two-dimensional, laminar and 

viscous fluid flow between two parallel flat plates. The 

distance between the plates is *h  and the length of the plates 

is *L . The fluid is assumed to have Newtonian behavior, is 

homogeneous and electrically non-conducting and is 

governed by FHD principle. 

In BFD problem, a spatially varying magnetic field is taken 

into account. According to Nursalasawati [10], the existence 

of the Lorentz force gaves only a small influence to the flow 

behaviours, but the energy equation played an important role 

in some observation as stated by Loukopoulos and Tzirtzilakis 

[8]. Erwan [4] stated that the Lorentz force governed by MHD 

principle did not affect the flow field. Thus, for the present 

study, we ignore the MHD but include the energy equation in 

modeling the flow behaviour. 

In this case, the gravitational acceleration and energy 

equation are considered. The upper plate temperature is kept at 

a constant *

u
T , while the lower at *

l
T , such that * *>

u l
T T . The 

governing equations of the unsteady Navier-Stokes and 

energy equations under the influence of the spatially varying 

magnetic field and gravitational acceleration are given below: 

0
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The boundary conditions are 

0 0* * *
, := ≤ ≤x y h  ( )0

* * * * * *
, , ,= = =ru u v T T y  

0* * * *
, := ≤ ≤x L y h  0 0 0* * * * * *

, , ,∂ ∂ = ∂ ∂ = ∂ ∂ =u x v x v x  

0* * * *
, := ≤ ≤y h x L  0 0* * * *

, , ,= = =
u

u v T T  

0 0* * *
, := ≤ ≤y x L  0 0* * * *

, , .= = =
l

u v T T  

In the above equations, the asterisk superscripts for the 

quantities denote that they are dimensional. 
*u  and 

*v  are 

the fluid velocity components in the x  and y  directions, 

*p  is the pressure, *ρ  the constant density of the fluid, 

* * *ν µ ρ=  the kinematic viscosity, *µo
 the magnetic 

permeability in vacuum, *M  the magnetization, *H  the 

magnetic field intensity, *g  the acceleration due to gravity 

and 
*k  the thermal conductivity and *T  the temperature 

where *
uT  and *

lT  are constants. The terms * * * * *
0µ ρ∂ ∂M H x  

and * * * * *µ ρ∂ ∂o M H y  in ( )2  and ( )3  are the components 

of the magnetic force per unit volume and dependent on the 

magnetic gradient. These terms are derived based on FHD 

principle. 

The term ( )* *β − cg T T  in ( )3 represents the density which 

varies linearly with temperature. Temperature difference will 

cause the density difference. This situation is characterized by 

the volumetric thermal expansion coefficient, *β .The 

derivation of this coefficient is shown below: 

1 1 1* ρ ρρ ρβ
ρ ρ ρ

∞

∞

−∂ ∆ = − ≈ − = − ∂ − ∆ 
p

T T T T
 

*ρ β∆ ≈ ∆T  

The equation of magnetization with the magnetic field 

intensity *H and temperature *T is assumed to be [14]: 

( )* * * *= −cM K H T T               (5) 

where *K is a constant and *
cT  is the Curie temperature. The 

magnetic field intensity is given as [14]: 
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where ( ),a b is the position of the magnetic source and γ  is 

the magnetic field strength at the source. 

2.1. Non-Dimensionalization 

In order to proceed to numerical solution of the system (1) 

to (4) with boundary conditions and assumptions (5) and (6), 

the following non-dimensional variables are chosen: 
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        (7) 

where 
*

ru  is the maximum velocity at the entrance and 
r

H * is 

the magnetic field strength. After using the dimensionless 

definitions as (7) the set of equations above will become as 

follows. 
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where ρ µ= * * * *
rRe h u  is the Reynolds number, 

* * * *2
0 0µ ρ=F rMn M u the magnetic number, * * *µ= pPr c k  the 

Prandtl number, =Pe Re Pr  the Peclet number 

( )2* * * *= −r p u lEc u c T T  the Eckert number, * * *ε = −
u u l

T T T  

the temperature number and ( ) 3 2* * *β υ= −
u l

Gr g T T h  the 

dimensionless parameter of Grashof number which 

approximates the ratio of the buoyancy force to viscous force 

that acting on a fluid. 2=Ri Gr Re the Richardson number. 

For the biomagnetic fluid flow problem, the dimensionless 

parameter appearing in (9) to (11) which is the magnetic 
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number is developed as: 
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0 0

2 2
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where * * *µ=
r o r

B H  the magnetic induction and 
r

M *  the 

magnetization at point ( )0a, . We note that, from the definition 

of the Reynolds number, * * * *

ru Re hµ ρ= . By using the 

relations (6) and (7), the magnitude of the magnetic field 

intensity H  is as follows [23].  

( )
( ) ( )2 2

,
b

H x y

x a y b

=
− + −

             (13) 

The boundary conditions are 

0 0 1 1 0 0

1 0 1 0 0 0

0 or 1 and 0 1 0 1

0 or 1 and 0 1 0 0

:

:

: , ,

: , .

x y u v T x

x y u x v x T x

x x y u v T
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3. Numerical Procedure 

The solution of the governing equations presented in the 

previous section equations (8) to (11) are discretized by using 

finite difference based on the staggered grids system. The u - 

momentum equation is approximated by using forward 

difference around the points ( )1 2,i j+ , while the v - 

momentum equation uses forward differences at the points 

( )1 2,i j + . For the continuity and energy equations, we will 

applying central differences at the points
 

( ),i j . 

There are some important advantages when we stagger the 

grids. First, staggered grids prevent odd-even coupling or 

what is known as checkerboarding between the pressure field 

and the velocity field. Besides that, the continuity equation 

can be written at the node ( ),i j  with second order accurate 

central differences without interpolation of the relevant 

velocity components. No interpolation is required when we 

use staggered grid because the variables are stored where they 

are needed.  

3.1. Discretization of Momentum and Continuity Equations 

From (8) to (11), there are four equations for the four 

dependent variables u , v , p  and T . For the energy 

equation, the temperature gradient exists in the flow. After the 

velocities and pressure fields are obtained, the temperature 

field can be solved directly from the energy equation. 

Using finite differences, we discretize the variables of the 

continuity and momentum equations. In this study also, we 

choose to use the Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE). We begin with the discretization of (8) 

to (11) using a first order forward differences in time and 

central differences for the spatial derivative. 

First, for u - momentum in (9), by using central difference 

around ( )1 2,i j+
 
the equation becomes 

 

Figure 1. Computational module for u - momentum equation 
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From the discretization of (15), we will need average value 

of v  on the top and bottom at the points m and n . The 

linear interpolation between two adjacent points is defined as 

follows: 

Average values of v  at the points m  and n  

At point m  : ( )1 2 1 2 1 1 21 2j i , j i , jv v v+ + + += +   (16) 

At point n  : ( )1 2 1 2 1 1 21 2 , ,j i j i jv v v− − + −= +   (17) 

We substitute (16) and (17) into (15).
  

Next, for v - momentum, we choose to use forward 

difference centered on point ( )1 2,i j +  for (10) as shown in 

Fig. 2 below. 
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Figure 2. Computational module for v - momentum equation 
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At the points p  and q  on the left and right side of the 

edge of the control volume as shown in Figure 2, we define the 

average values of u  as follows: 

Average values of u  at the point p  and q  

At point p  : ( )1 2 1 2 1 2 11 2 , ,i i j i ju u u+ + + += +   (19) 

At point q  : ( )1 2 1 2 1 2 11 2 , ,i i j i ju u v− − − += +   (20) 

We substitute (19) and (20) into (18). 

For continuity equation, applying central difference at point 

( ),i j , we get 

1 1 1 1 0
' ' ' ' '

. . . . .
n n n n n
i j i j i j i j i jap bp bp cp cp d a+ − + −+ + + + + =   (21) 

where 
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In the above equations, the values of ∆x , ∆y  and ∆t  are 

determine as below: 

1∆ = −x L nx , 1∆ = −y h ny  and 0 001.∆ =t s 

where nx  the number of steps in space(x) and ny  the 

number of steps in space(y). The reason why 0 001.∆ =t s is 

chosen illustrated in Fig. 4.    

The SIMPLE algorithm has often been used to solve the 

problem of incompressible flow on a staggered grid. Its 

procedure is iterative, consisting of a guess and a corrector 

step. In the guess step, the velocity field is calculated from the 

momentum equations based on the estimated pressure field. In 

the corrector step, the pressure correction equation is derived 

and solved. Then, the velocity fields are corrected by using the 

variation in the pressure field. The velocity and pressure 

values are calculated iteratively to satisfy the continuity 

equation. The steps are stopped when convergence is achieved. 

More details about SIMPLE algorithm are shown below. The 

resulting numerical computation and simulation are solved by 

the SIMPLE algorithm using MATLAB programming. 

1. Guess the pressure field 
*

p . 

2. Solve the momentum equations to obtain *u  and *v . 

3. Solve the pressure correction equation for 
'

p . 

4. Calculate p  by adding 
'

p  to the previous value of 
*

p . 

5. Calculate u  and v  from the velocity correction 

relations as follow. 

* 'u u u= +  and * 'v v v= + . 

6. Solve the discretization for other scalar equations such as 

temperature, concentration etc., if they influence the flow 

field through fluid properties, source term etc. If they do 

not influence, it is better to calculate after the convergent 

solution is obtained. 

7. Treat the corrected pressure p  as 
*

p
 
and return to step 

2 and repeat the whole procedure until a convergent 

solution is achieve. 

3.2. Assignment of the Parameter Values 

The above algorithms are developed to solve the problem of 

the effect of gravitational acceleration on biomagnetic fluid 

flow and heat transfer in the channel under the influence in 

spatially varying magnetic field. The system of equations in (8) 

to (11) has been solved together with the appropriate boundary 

conditions. The dimensionless parameters are required to 

allocate the values for entering into this problem in order to 

continue to the derivation of the numerical results.  For this 

problem, we assumed the fluid is the blood with 
31050*

/kg mρ = and 3 1 13 2 10*
. kgm sµ − − −= ×  [14]. The fluid 

flows with the maximum velocity, 11 0*
.

r
u ms−= , the two 

parallel plates are located at a distance 21 0 10*
.h m−= × , and 

the Reynolds number, Re  is set to 200. 
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Table 1. Dimensionless parameter for magnetic number with Re = 200  

Magnetic Induction (
*

r
B , Tesla)  Magnetic Number 

2 30.76 

4 61.52 

6 92.30 

8 123.0 

The present results are acquired for grid 31 21× , i.e. 651 

grid points. The magnetic field is located at the point 

( ) ( )2 5 0 05, . , .a b = − . The points that we test are at 0x = , 

2 5.x = , 5 5.x =  and 10x = . Tzirtzilakis [22] stated that 

there are two techniques to increase the magnetic number. By 

adding artifically created nanoparticles, the magnetization of 

blood will increase. So, the higher values of magnetic number 

F
Mn  may rise. In this case, the blood has achieved 

magnetization of 60
*

rM A / m= [8]. On that account, the range 

of magnetic number, 
F

Mn is not only determined by magnetic 

induction but also by a magnetic field generated by a common 

magnetic dipole based on the physical problem. 

A range is adopted for temperature field under the influence 

of magnetic field. The temperature of the upper plate is 

assumed as 43* o

u
T C=  while the temperature for the lower 

plate is considered as 3 5*
.

o

l
T C=  [4]. For these values of 

plate temperature, the temperature number ε  is equal to 8. 

The Prandtl number is considered to be constant due to the 

viscosity *µ , the specific heat under a constant pressure 
*

p
c  

and the thermal conductivity *k of any fluid are temperature 

dependent. Therefore, for the temperature range considered in 

this problem, it can be assumed that 20Pr = when the 

measurements for fluid (blood) are 
* 1 1

14.65
p

c Jkg K
− −=  and 

3 1 1 12 2 10*k . Jm s K− − − −= ×  and Eckert number, Ec is equal to 
62 5057 10.

−× . For effect of gravitational acceleration on 

biomagnetic fluid flow and heat transfer, we set Richardson 

number in the range 0 3 55.Ri≤ ≤  and the value of 

gravitational acceleration approximately 29 8. ms− . 

4. Results and Discussion 

Fig. 3 illustrates the u - velocity profile for various 

numbers of iterations, K  ranging from 4 to 300. The u - 

velocity profile has converged to Couette flow solution at 

300K = . 

Fig. 4 indicates the velocity profile for unsteady flow field 

at various times. These results are compared to the steady 

solution [8]. It is observes that the value of 0 001.t∆ = s is 

acceptable for the present calculation. The calculation 

becomes unstable when t∆  is larger. 

 

Figure 3. The u - velocity profile for various iteration numbers 

 

Figure 4. Velocity profile for unsteady flow field at various stages in 

time-stepping process 

Fig. 5 depicts the axial velocity profile along specific 

locations in the channel for 8*

r
B T= . These results are 

compared with Loupopoulos and Tzirtzilakis [8]. At the point 

0x = , the axial velocity of the present method is equivalent to 

boundary condition used. At the point 2.5x = , the present 

method gives approximately the same result as Loupopoulos 

and Tzirtzilakis [8]. But, at 5 5x .= , the flow pattern seems to 

contrast Loupopoulos and Tzirtzilakis [8]. Finally, the flow 

pattern of velocity at the outlet which is at the point 10x =  

matches nicely with Loupopoulos and Tzirtzilakis [8]. 

 

(a) x = 0 
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(b) x = 2.5 

 

(c) x = 5.5 

 

(d) x = 10 

Figure 5. The axial velocity profile along specific locations in the channel for 

8*

r
B T=  

Fig. 6 shows the effect of gravitational acceleration on the 

flow field in streamline velocity contour with and without 

magnetic field. From the figure, it can be seen that there is a 

distraction in the velocity field after a point of magnetic 

strength and the distraction becomes greater with the increase 

of magnetic field strength. 

 

Figure 6. The effect of gravitational acceleration at 2 5.x = . (a) without 

magnetic field b) with magnetic field at 2T and 4T 

Fig. 7 indicates the v - velocity profile at 2 5.x =  with and 

without gravitational acceleration. For v - velocity profile 

without gravitational acceleration, the velocity decreases from 

0  to 1 34.−  and stays constant after 0 3.x = . With 

gravitational acceleration, the velocity decreases from 0  to 

2 57.− and then remains constant. These results show that 

gravitational acceleration will cause the velocity of fluid with 

magnetic field to drop more sharply. The graphs indicate some 

fluctuations at points 0 02.x =  to 0 15.x = . But the 

fluctuation reduces with the effect of gravitational 

acceleration. 

 

Figure 7. The effect of gravitational acceleration for the v - velocity profile 

at 2 5.x =  for 8*

r
B T=  
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Figure 8. The effect of gravitational acceleration for the v - velocity profile 

at 2 5.x =  for various magnetic field intensities 

Fig. 8 shows the v - velocity profile at 2 5.x =  for various 

magnetic field intensities with 3 55.Ri = . It is evident from 

the figure that the increase in magnetic field strength will 

cause the v - velocity field to decrease drastically. The effect 

is very significant for magnetic field strength 8  Tesla where 

the v - velocity decreases from 0  to 2 57.− compared to the 

decrease from 0  to 0 64.−  at 2  Tesla. 

Fig. 9 shows the u - velocity profile with and without 

gravitational acceleration. From the figure, it can be seen that 

there is no change in the u - velocity profile. 

The effect of gravitational acceleration for the axial velocity 

profile at 2 5.x =  for varying magnetic field strengths is 

illustrates in Fig. 10.  For 2*

r
B T=  and 4*

r
B T= , the 

maximum axial velocity are about 0 77. . The axial velocity 

increases from 0 85.  and 0 95.  for 6*

r
B T=  and 8*

r
B T=  

respectively. It shows that the velocity at the upper plate 

increases with the magnetic field strength. 

 

Figure 9. The effect of gravitational acceleration on the u - velocity profile at 

2 5.x =  for 8*

r
B T=  

 

Figure 10. The effect of gravitational acceleration on the u - velocity profile 

at 2 5.x =  for various magnetic field intensities 

Fig. 11 shows the temperature profiles at different parts of 

the channel. At the point 0x =  which is at the inlet, the 

present method shows that the temperature result matches 

nicely as reported in Erwan [4]. At the point 2 5.x = , the 

temperature profile for our method increases but it remains a 

constant value from 0y =  to 0 2.y =  about 05 C as in 

Erwan’s study. At the points 3 1.x =  and 5 5.x = , the 

temperature profile retains a constant value from 0y =  to 

0 8.y =  at about 00 C . In contrast Erwan’s study shows the 

temperature increases at point 3 1.x =  and decreases at point 

5 5.x = . The temperature disturbance occurs due to the 

addition of the magnetic field strength. The temperature 

disturbance shows slight deviations at the point 2 5.x =  

between the inlet and outlet. But, the temperature disturbance 

is more at the points 3 1.x =  and 5 5.x = . 

 

a) x = 0 
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b) x = 2.5 

 

c) x = 3.1 

 

d) x = 5.5 

Figure 11. The temperature profile along specific locations in the channel for 

8*

r
B T=  

The temperature profile at point 2 5.x =  for various 

magnetic field strengths is presented in Fig. 12. These results 

prove that the increment of magnetic field strength will cause 

an increase in the temperature profile. 

 

Figure 12. The temperature profile at 2 5.x =  for various magnetic field 

intensities 

Fig. 13 illustrates the effect of gravitational acceleration for 

the temperature profile at 2 5.x =  against that without 

gravitational acceleration. The temperature field remains 

constant from 0y =  to 0 95.y =  at about 7 94.
o C . This 

result shows that gravitational acceleration causes big 

influence to the temperature profile. 

 

Figure 13. The effect of gravitational acceleration for the temperature profile 

at 2 5.x =  for 8*

r
B T=  

The temperature distribution shows that a little difference 

to the changing for various magnetic field strengths in Fig. 

14. 

 

Figure 14. The effect of gravitational acceleration for the temperature profile 

for various magnetic field intensities 
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5. Conclusion 

In this study numerical solutions of biomagnetic fluid flow 

under the influence of varying magnetic field are presented. 

The flow considered is unsteady, non-isothermal and based on 

the principle of FHD. This model is solved using finite 

difference numerical technique based on SIMPLE algorithm 

on the staggered grid system. The main objective of this paper 

is to employ the model of biomagnetic fluid using the 

principle of ferrohydrodynamics to investigate the effect of 

gravitational acceleration on unsteady fluid flow.  From the 

results, it can be concluded that the magnetic field and 

gravitational acceleration influence the fluid flow behaviour. 

The increment of magnetic field strength causes the velocity 

and temperature fields to increase. A vortex appears near the 

lower plate below where the magnetic source is located. 

Besides, it also shows that the drastic changes in the v - 

velocity field as a result of gravitational acceleration. The 

velocity decreases and remains constant after a certain point. 
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