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Abstract: An integrable coupling of the known integrable differential-difference equation and its Lax pair are presented.
Based on the gauge transformation between the corresponding four-by- four matrix spectral problems, a Darboux transformation
of Lax pair for the integrable coupling is established. As an application of the obtained Darboux transformation, an explicit

solution is given.
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1. Introduction

Since the original work of Fermi, Pasta and Ulam in the
1960s [1], integrable differential- difference equations has
attracted wide interest, and has been applied in many fields of
Physics. Many integrable differential-difference equations
have been deduced. Their integrable properties have been
studied from different points of view. Such as the inverse
scattering transformation [2], the symmetries and master
symmetries[3], Hamiltonian structure and bi-Hamiltonian
structure, [4-6], constructing complexiton solutions by the
Casorati determinant[7], the symmetry constraints [8], and so
forth.

Recently, the investigation of integrable coupling system of
soliton equations has attracted much attention. The integrable
couplings originate from the work on perturbations around
solutions of evolution equations [9], and the perturbation
bundle [10]. A few approaches to obtain integrable coupling
systems of the integrable evolution equations are proposed.
For example, perturbation methods [11-12], enlarging spectral
problems [13], semi-direct sums of Lie algebras [14-17], and
SO on.

For a given integrable differential-difference equation

ynt :Kn(yn)’ (1)

In which y, = y(n,t) is a vector-valued real function

defined over ZxR . We actually want to derive a bigger,
triangular integrable differential-difference equation as

follows:
(ynJ :( Kn(yn)J -
z,), \§,.z,)
Here z_  is a new vector-valued real function defined

overzxR, and the vector-valued function &(,,z,) should
9¢(y,,2,)
y,]
[v,1=(¥,-Yps1>Vuas--) . This statement means that the other
differential-difference equation in the bigger system (2)
involves the dependent variables of the original equation (1).
The Eq. (2) is called an integrable coupling system of Eq. (1).
In addition, Darboux transformation is a powerful tool to
obtain explicit solutions of integrable differential-difference
equations [18-24]. The discrete matrix spectral problem of
integrable differential-difference equation plays a key role in
the theory of Darboux transformation. From the associated
discrete matrix spectral problem, we may construct the
Darboux transformation of integrable differential-difference
equations and obtain explicit solutions of integrable
differential-difference equations.
In Ref[21], an integrable differential-difference equation

— _ .2
{rn,t - rn+1 rn Sn >

satisfy the non-triviality condition # 0, where

G3)

— 2 _
- rnSn Sn—l >

and its integrate family are derived from a matrix spectral
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problem. Hamiltonian structure of this integrable family is
established by the discrete trace identity .Its related Darboux
transformation is discussed. If we set the equation (3) in
following form

yn,t :Kn(yn)5

where y, = (,,s,)", then a first-order perturbation system

function, the shift operator E, the inverse of E are defined
by

E(f(m)=f(n+D, E"(f()=f(n=1, nOZ

By a direct calculation, we can obtain that the integrable
coupling (5) has following Lax pair

A A 0 Au,
of equations (3) may be represented as Fo U o - s, l+rs, w  rw +tsu
OER \ L KT R T
2,) K )+ K0z, ] @) 0 0 s lers
. ' r
In which z, =(u,,w,)" ,K, (»,)[z,]denotes the Gateaux " Zj;
sn —_— n
derivative of K, (v,) with respect to ', in a direction z, .It is Xo = ., 8= (6)
. . un ﬁn
easy to obtain that the above first-order perturbation system (4) 4
of the equations (3) become W %
rn,t = rn+l - rnzsn 4 and
— 2
Sn,t - rnsn Sn—l’ ) , (5) ¢",t = I/n¢n ,
un,t = _rn+1 +un+1 + rn Sn—l + rn Wn—l + 2rnsn—lun’
Wn,t = Sn—l - Wn—l _’;12+1Sr1 + Snzun—l + 2rn—lsnwn' ln WhiCh
Because first two equations in the Eq.(5) form the
Eq.(3),the Eq.(5) is an integrable coupling of the integrable
differential-difference equation (3).Here, let f(n) be a lattice
g_rnsn—l Arn g_rnsn—l _rnwn—l _Sn—lun _rnA +unA
A
n-1 e rnsn—l _Sn—l + Wn—l _5 + rnsn—l + rnwn—l + Sn—lun
0 0 5 TS Ar,
0 O Sn—l _E + rnsn—l

Namely, the compatibility conditions of the Eq. (6) and Eq.
(7)is

Un,l = (EVn )Un - Un Vn ° (8)

and the Eq. (8) yields the Eq. (5).

This paper is organized as follows. In section 2,by means of
the gauge transformation of the Lax pair, we construct a
Darboux transformation of Lax pair of the Eq.(5).To the best
of our knowledge, Darboux transformation of Lax pair of this
triangular integrable coupling has not been studied. In Section
3, as an application of Darboux transformation, an explicit
solution of the Eq. (5) is deduced. Some conclusions and
remarks are given in the final Section.

2. Darboux Transformation

It is well known that Darboux transformations provide us

with a purely algebraic, powerful method to find explicit
solutions of some integrable differential-difference equations
(or discrete integrable systems). A matrix spectral problem of
an integrable differential-difference equation plays a key role
[19-24]. we know that a gauge transformation of matrix
spectral problems is called a Darboux transformation if it
transforms the spectral problem into another spectral problem
of the same type. In what follows, we are going to establish a
Darboux transformation of the integrable
differential-difference equation (5).In theory of Darboux
transformation, a key problem is that the transformation
matrix is properly presented. We introduce gauge
transformation

g =N"g 9)

N) -
Here, we assume %" is of the form



242 Xi-Xiang Xu:

N-1 N-1

N (i) yi (i) yi+l

Y aa Y b0
i=0 =0

0 0
0 0
in which N is a natural number,

@ ) L0 g0 @O O @ 70 ;= -
an ’bn ’Cn ’dn >Jn ’gn ’hn ’ln ’l_l’”'N 1’ are

undetermined functions of variables 72 and ¢ .The Eq. (9) can
transform two spectral problems (7) and (8) into

Eg=¢,=U4q. (11)
5}1,; =V.@.. (12)
U,=n0u,@M™" .y, =m0, +nMy,mM™ 13)

In what follows, we determine M such that U, and

V. in Eq. (13) have the same form with U, and V, in Eq. (6)

Nl - - - - .
2@ +a,[n1b A, + B,[n)f," +y,[nlg," A A, = =1+ B,[n)A] 1< j < 2N.

i=0

N-1

S +a,[md A, + Bl f," +y, [l A)A, = ~(@,[n]+y, DAY 1 < j S 2N.

i=0

N-1

> (B,[n1al +y,[nbPANA, = =B [n]AY 1< j<2N.

i=0

(16)

N-1
> (B, [nlel +y,[nldPA)A, = -y, [nAY 1< jS2N. (17)
i=0

In which
_ﬁ(t’/].i)_l(.iwr?(t’/‘j)
a[n]_ )
! gdn(t’/‘j)_l(jwl(ts/‘j)
_(q:(t’/‘.i)_K.iwj(t’/].i) _
'Bj[n]_@(t,/]j)—Kjl/ll(t,Aj)’ J=123,2N.  (18)
[n]zwj(tﬂ/‘j)_l(jl//:(nAj)
Y g k@A)

A,,K;,j=123--2N, are suitably chosen such that all the
determinants of coefficients for

Eq.(14) ~ Eq.(13) are nonzero. Therefore,
al,p? W g0 O g0 pt qO 5=12, 3,-N-=1, are
uniquely determined. From £q.(14) ~ Eq.(17), it is easy to get
that det(M'")

is4N th-order polynomial of A,/ =12,--2N, are all its roots.

N-1oo N-1 o
DA AN+ AN
i=0 i=0
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N-1 ) ) N-1 . .
AN + Zf‘n(r)Ar Zg'(lz)/‘zﬂ
N—lizo_ . = N-1 . .
ShOx Y ION
i=0N—l . . N-1 [=_O . (10)
MY avx o Sha
i=0 i=0

N-1

(i) yi
2l
i=0

N-1 . )
AN + Zdn(l)Al
i=0

and Eq. (7) respectively. Let

9, = (@G .G GG (LA
W, =W L)W A

two real linear independent solutions of Eq. (7) and Eq. (8),
and use them to define following

linear algebraic systems for a'”,b",c\” . dV, £@ @ p®
and 19,i =123, N ~1.

(14)
(15)
Thus, we have
2N
det(MyY) =[] (A-4))". (19)
=1

Proposition 1. The matrix U, defined by Eq. (13) has the

same form asU, , in which the old potentials 7,,s,,u, and
w, are mapped into new potentials 7,,S, ,4, and W,
according to

7 o= —pWND

rn - rn bn 2

v = (N-1)

Sn _Sn +cn+1 > (20)

~ _ (N-1) _ (N-])

un - un +bn gn ’

o= — H(N-D (N-1)

Wn - Wn cn+1 + hn+1 ‘

Proof: Let

N-1 N-l1 N-1 N-1

— N (i) yi — (i) yi+l — (i) yi — N (i) yi

an _/1 +zan /1 ’bn _zbn A ’Cn _zcn /1 ’dn _/1 +zdn A >
i=0 i=0 i=0 i=0
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N-1 N-1 N-1 N-1
f;z = /]N + an(i)Ai,g” = zg;(zi)Aiﬂﬂhn = Zhr(zi)Aiﬂln = AN + er(li)/]i'
i=0 i=0 i=0

i=0

It is easy to obtain We can find that Ty(AmFa(mFu(An)  and
r“(ﬁ,}’[) r12 (A,}’l) r13 (/L }’l) rM(A,}’l) I_14 (A’n) are (4N +1) order polynomials
n™My (A™MY = M(A,n) T,(A,n) TuAn) [,An) in A, T, An),l,An,T,,An and T,,(A,n) are 4N
wa U (M,70) = 0 0 FLn) TG | @D rder polynomials in A .Furthermore, from Eq. (6) and Eq.
0 0 Ln) Ty (7), we get

7 g, (n @ (n
”j["”]:ﬂ‘/( . Bln+1]= A yln+1]= 0 i, (22)

U, (n) U, (n) U, (n)

With

Hi(n)=s, +(+rs)a;[n]+w,B,[n]+(s,u, +r,w,)y,n],
v,(n)=A, +r,A.a;[n]+u,dyn],

B j=12,---2N. (23)
Jj(n) - /]jIBj[n] + rn/‘jyj[n],
a)j (n) = Snﬂj[n] + (1 + rnsn)y/[n]'
According to Eq. (22) and Eq. (23), we can get the o - - o o o
expressions of ApesDirsCoats A i s myA+m mA+my  mPA+mG mA+m
0 0 0 0
Soi1s& 1o M,u151,4 - Making use of Eq.(14) ~ Eq.(18) , through M, = M " mm” o mm“ o b
. . . . 0 0 myA+my  myA+mp,
a tedious but direct calculation, we can obtain
0 0 m m
21 22

M, (A,n)=0,i=12,j=1234,k=12,---2N.

1) - = LR
Where m(,mY),m%,m) and m;),l =12,7=1234, are
Therefore, we have all independent A . Hence we get

U, M) =deq(n;)M,,, nYu, =m,neM. (24)

n+l
with Equating the coefficients of AY*',i =1,2, in Eq. (24). we
have
n _ 0 _ h _ N-D) _y o (0) 1 _ 0 _ n _ N-1 N-1)
ml(l) _l’ml(l _Oaml(z =t —b; _rn’ml(Z) _O’ml(?s _O’ml(?s —(),m1(4 _”n+b;5 )_gr(1

b

0 — 0 — (N-D) % . (0) — _ 3 (N-D (N-DY — 12575 ., —_  _ _(N-)
m,, =0,m; =s, +c, =s,my =1+, =b, " " )(s, +c =1+rs,,my; =w, —c

+1 n+l nns n+l
(N-1) — ~ 0) — — 1 (N-D — ~(N-D) (N-1) (N-1) (N-1) N-1) _ (NI y — 37 75 ST
hn+1 - Wn ’m24 - (rn bn )(Wn cn+1 + hn+1 ) + (Sn + cn+1 )(un + bn fn ) - rn Wn + Snun :
The proof is completed.
Proposition 2. The matrix J/  defined by (13) has the same form as V' in Eq. (7) under the transformation (20), i.e,

n
~
V.=

A ~ A o ~ ~
E _rnsn—l /]rn 5 _rnsn—l _rnwn—l Sn—lun _rnA tu A
~ A~ ~ L~ Aloe s ~ ~
n-1 - E + rnsn—l - Sn—l + Wn—l - 5 + rnSn—l + rnwn—l + Sn—lun
) (25)
0 0 —-75._ Ar
2 n n-1 n
~ A
0 0 n-1 -—t rnsn—l
2

Proof: Let
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>.(An) Z,An) Z,(An) Z,A,n)
(|—|(N)) AWy N (N))* — z21(/]s’7) zzz(A,”) 223(A,”) 224(/1,n) i
" o 0 0 I, (An) Z,(A,n)
0 0 >, (An) Z,(A,n)
We may get that

2, (An),Z,(A,n),Z5(A,n),Z,(A,n),Z,,(A,n) and T,,(A,n)
are (4N +1) order polynomials in A ,Z, (A n)and Fx(A,n)
are 4N order polynomials in A . Due to Eq.(14)~Eq.(18), by a
detailed analysis, we can get

Zi].(/‘k,n) =0, i=12,j=1234k=12,---2N,

and the following equation is established

(@M, +0Mr )M =det(™)Q,. @7
1 _ 5
il =il ==, =0 s, e ) =
1 _ _
qg) = 2 ’qig) = n _brEN K )(Sn -1 (N 1)) (7" brEN b )(Wn—l
+cr(tN_1) )(un +b£N_1) _gr(tN 1)) = ZtEn—l _thn

0) —

_gn 1))__7" +un’q14 Oq(O) =

(Nl)_

N1 _ Nl
tc ( )) n17q23 __(Sn—1+cr(z ))+(Wn—1

0 _ N-1 N-1 N-1
a5t ==(r, =b" )5, =N+ (o, =5 (W,

+b’iN—l) (N—l)) -

- gn _rnsn—l + rn Wn—l + Sn—lu

ne

The proof is completed.

Hence we conclude that the transformation (9) and (13) can
change the Lax pair (6) and (7) into another Lax pair with
same form. As usual, the gauge transformations (9) and (20):

(¢n’ r,,8,,u,,w, ) - (ﬁn’ r,,S,,u

is a Darboux transformation of the Eq. (6) and Eq. (7), and Eq.
(20) is so-called a Béicklund transformation (BT) between

(alna VysS,,U "’T/n ! and old
(¢n’ n’ n’ n’wn)

propositions 1 and 2, we have the following
Theorem 1. Each solution (@, ;7. U, W, )T of the Eq.

u,,w,). (29

new solution solution

In conclusion, according to the

n?d n’
~

(5) is mapped into its a new solution (ﬁn VS,

(20),
are given by

un’ﬁ}n)T

under the transformation where

pND N GV (N=D

Eq(14) ~ Eq.(17).
Remark 1. Because the highest order polynomial in

elements of matrix M is N order polynomial, Darboux

FoSp-1-912 =1,

_C,(IN_I) + hiN—l)) - _5

N-1 N-1
e 4G,
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Here
GO+ gUA g0 gOA g0 gV +g®
o =| ©  @Ate e quAven
n 0 0 gOA g0 gV +g®
0 0 a5 aRA+ay
in which ¢1,455,44341} 4% 4% -4} i =1,2,j =1,2,3,4,are all
independent of A .

From Eq. (27), we obtain
(I-I (nN))t + I_I ElN)Vn = Qn I-I ElN) ° (28)

Comparing the coefficients of A in Eq. (28), we have

1 — b(N—l) —
n

0) —
aqu) - O’

(N-1) N-1)
_cn +hr(l )_(Sn—l

- (O — — {(N-D (N-1)
Sn 1un’q14 - (rn bn )+(un +bn

A
H = _ 0) — — 1, (N-D)
Spc15G2 =54y =, =b," ),

2

1 —
ot TW, o) =

3

N | —

N-1
+c," ) u,

transformation (29) is also called N-fold Darboux
transformation [19], M‘" is also known as a matrix of N-fold
Darboux transformation.

3. Application of Darboux
Transformation

In this section, we will apply Darboux transformation (29)
to find an explicit solution of Eq. (5). First, we chose a seed

51,8,,U,

,w, ) =(0,0,e,e™)" of Eq. (5), and consider 1-fold
Darboux transformation of Eq. (6) and Eq. (7), namely when

N =1 .Substituting this solution into the Eq. (6) and Eq. (7),
we can obtain the following Lax pair

solution (i.e., the simple special solution) (@
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A 0 A Ae

2 2
A0 0 A€ A A
01 ¢ 0 0 -5 & 3

EB=l0 0 1 o % %7 ) (30)

0o 0 Z o

00 0 1 2
o 0 o 2
2

Solving above two equations, we have

(/lexp(l—(j -1)y) —14"*‘)exp(ﬁ) (Aexp(/]—(/il—l)z) —14"*')exp(ﬁ)
(g A" e)q;((/il l)t))e xp(- 2 (_g A" e)q;((/il l)t))e xp(= 2
o= At W = At
A" exp(;) A" exp(—-)
exp(——) —exp(——)

X exp(=(A, = 1))

, exp(-%)(u K)+( (1-k;))exp(-A;0)

a,n]= s =12,
/ A, exp(-=(4, =) R
T(HK,) 2/1,» (1-«,))
At
A= K,-)exp(jj)
B;n]= , i=12.
! A, exp(=(4, =D)1) T At
T(HK,») 2/\, (1=k;))exp( 2)
eXp( )(1+K)
a[n]= , =12
! A, exp(=(4, ~Dr) LT ﬂ
=) (I+x;) 2% (I-k;))exp( 5 )
Finally, by means of a,n.5nlylnl.j=12,  and

transformation (20), we obtain a 1-fold solution of Eq. (5):

7 == = (A —A)B[nB[n] T =0 = (A =AW +1]y[n+1]
T AL =AM " Bl + 1= B+
i =¢ b0 —g0 =¢ - A-ABIBI -1

ALy = ALyl ALY -AR n]yz[n])

(Aa[mAnBm) ~(Bln

) VI =B (BIn) KA —a[ml(BInl) BlnAA,

—a[mBIBI) A, + B YinAA + BB yinAA +(Bn) yilnAA,

+(Bln)Y Bl A, +ayln]

A = A)yn +1]y,[n +1]

Bl Bk —(Bln)Y ok =By Blrlys[nk).

(/]1 _/]2)

- (0) ) — =t _
n _e n+1 hn+1 -

Bo[n+11y[n+1]- B [n+1]y,[n +1]

~Wn+1) o[+ 11+ B+ DK +11Y po[n+11-

Starting from the obtained explicit solution, we apply the
Darboux transformation (29) once again, and then other new
solution of Eq. (5) is obtained. This process can be done
continually. Therefore, we can obtain a lot of explicit solutions
for the differential-difference equation (5).

4. Conclusions and Remarks

In this paper, we have introduced an integrable coupling of
the known differential-difference equation, and presented its
Lax pair. With the help of a gauge transformation of the
corresponding Lax pairs, a N-fold Darboux transformation of

Lax for the triangular integrable coupling has been established.

As an application an explicit solution is given by the obtained
Darboux transformation.

Furthermore, we may also research other interesting
integrability problems for the obtained integrable coupling,
for instance, the inverse scattering transformation,
constructing complexiton solutions by the Casorati
determinant, and so on.

In addition, it should be noted that the construction method
of Darboux transformations of the integrable couplings of the
continuous integrable systems is similar our method in Section
2, the corresponding Darboux transformations of the

(Bo[n+1y[n+1]= Bln+1ly,[n +1])’

an+NBn+N(m+Y A+ yln+1(,n +11°

x(@,[n+1B,[n+1](y;[n +1])*

= Bln+ 1y + 1,0 +11)°.

integrable couplings of the continuous integrable systems will
be researched in our future work.
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