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Abstract: The integral representation is developed for linear initial and boundary value problems. The fundamental
solution is defined by the linear differential equation with constant coefficients and plays a key role in obtaining the integral
representation. This becomes a very strong constraint in developing the theory to nonlinear problems. In the present paper, an
innovative generalization of the integral representation or generalized integral representation is proposed. The numerical

examples are given to verify the theory.
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1. Introduction

Wu [1] and Uhlman [2] obtained integral representations
for Navier-Stokes equation using the fundamental solution
for Laplace operator and showed clearly how to apply the
integral representation method to nonlinear problems. Wu

verified his theory through a series of numerical calculations.

Isshiki, Nagata and Imai [3] has applied Uhlman’s idea to a
viscous flow around a circular cylinder successfully.

In the present paper, an innovative generalization of the
integral  representation or  Generalized Integral
Representation (GIR) is proposed. The idea is applied to the
problem of advective diffusion. Ordinary, we define the
fundamental solution first and then apply it to obtain the
integral representation. On the other hand, in the generalized
theory, the fundamental function is chosen first, and the
differential equation satisfied by the fundamental solution is
defined properly reflecting the fundamental solution and the
boundary value problem [4]. For example, we can use the
Gaussian function as the generalized fundamental solution.
This approach can extend the applicability of the integral
representation method.

We conduct numerical calculations of 1D and 2D
problems and demonstrate the effectiveness of Generalized
Integral Representation (GIRM). Stable and precise results
are obtained in an admissible time.

2. Generalized Integral Representation
in Diffusion Problem

2.1. Generalized Reciprocity

The advection-diffusion equation is given by

ac(gx oD 4 (u(x,0) 0, )C(x.0) 0
=0, fx(x,n0,C(x,0)) + O(x, t)

where x and ¢ are the coordinates and time, C, u,
k and o are the density of material, advection velocity,
diffusion constant and source of material, respectively. For
convenience, we rewrite Eq. (1):

q(x,t) = —k(x,H)1,C(x,1)

aC( X, 1) 2

== (u(x, ) M)C(x, 1) = -0, [(x,0) + o(x,1)’

where q is the flow of the material.
We consider two systems P and Q:
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qP(x,t) = —K(X,t)DxCP(X,t)
w (0 M)C (x,1),

=-0, R)P(x,t)+ap(x,t)
and

q%(x,t) = —k(x,£)0,C? (x,1)
0C9(x,1)
ot

=-0,4°%(x,0)+0°%(x,)

- (u(x,) M,)Ce(x,1)

Now, we have

aC"(x,1)
0

o=]ff

+(u(x,))M,)C? (x,1) o)
+0,.0" (x,0)-0"(x,1)
0C2(x,1)

ot
+0, [4%(x,0) = 0° (x,1)

J”H:ac (x, t)CQ( - ac? (X t)Cp( t):|

((u(x I, (x.0))C2(x.1)
~(Enmyc? =k’ x

~(u(x,),)C°(x,)

]CP(x,t) av,

0, @’ x.0)coxn - [0, @2 xn)C (x.0)

o @0 x + a2 x0)C” (x.0)]Jav,

[Pt - e
-{DE [ﬁ“(XaI)CP(XaI)CQ(XJ)) }

- (0, mx,))C” (x,5)C(x,1)
[0, da” x.0)C2(x.0) -0, o (x.)C" (x.0)
oo+ o (x)C" (x.10)] }de .

Rewriting Eq, (5), we obtain

I, e,

+[[ a"nm,co(xnds, - [[[ o"(xnC(x0av,

+%,5PQ [ utx.0)3,C" (x.)CO(x.0)dS,

€)

“4)

6))

—%5”9 j j j } (O, m(x,0)CT (x,)Co(x,1)dV,

= JIf PG o,
+[[ a?xnm,C"(xndS, - [[[ ox0CT (x0)av,
+%;QP [ ux.0) 3,CO(x,0)C” (x,0)dS,
—%gQPmV (O, mi(x,0))Co(x,)C” (x,1)dV, , (6)
where
e =2 =1. 7

Equation (6) expresses the dynamic reciprocity between
P and Q.

2.2. Generalized Integral Representation or 1-Step
Generalized Integral Representation (1-GIRM)

Let’s define two solutions q and q as

{q(x ,0) = —k(x,0)0,C(x,t)

0C(x,t) +(u(x,t) MD,)C(x,1) = -0, [(x,1) + 0(x,t) (¥
and
q(x,&,1) = —K(x,t)Df(x,é,t)
%—(u(x,t)mx)a(xa@t), )
= _Dx m(X,é,t) + 5("3%70

where d isa given function. Applying Eq. (6), we obtain

I, 200 G

+[[ a0 m,Cxgnas, - [[f, oxnCixgnar,
+%Hsu(x,t) [h, C(x,1)C(x,&,1)dS,

-2 11I, B, ) ncxenar,

- JIl, 2CE e,

+[[ axenmcnds, - [[f dxencxnar,

_%j.[s u(x,1) BIXG(X, §,0)C(x,1)dS,
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+%J‘”V(DX m(x,t))a(x,g,[)C(X’t)de . (10)

Rewriting
,[”Vg(x,é,t)C(x,;)de

=-JJJ, XD e nar, +[] IV@%,M

_ .[J.Sq(x, 1), C(x,&,1)dS, + jjsﬁ(x,g, £y, C(x,1)dS,
+[[[ oxnCxgnav,
- jISU(X, t) Ehxa(xaga t)C(X, t)de

+[[[ (0, x0)Cx.80Cx 0V, (1n)

Exchanging x and &, we obtain a generalized integral

representation (GIR):

[l 3exncenar,
] _I”V%a@"f)d”a +ﬂfV%c<x,r)dV;

-[[.a@ 0 m.CEx.0dS, + [[ §Ex.00.CE S,
+[[], e@nCExnar;

- [[ @0 m.CEx.nCEnas,

+[[] [0, men)Cexncena, . -

If  O(xEf) s delta
S(X,F,, HN=0(x—-&)0(y—n)d(z—{) , the integral on the
left-hand side of Equation (12) becomes C(x,?) . However,

Dirac’s function

when the convection velocity u(x,#) and the diffusion
constant K('x,t) are not a constant vector and number,

respectively, the analytical solution of q(x,&¢) and
5(x,e‘;,t) can’t be obtained. Instead, we can specify
5(x,e‘;,t) first and determine 5'( x,E,t) next. For example,

if we use the Gaussian function for 5( x,E,t):

! [x-&f
o e

where ) is assumed constant, but it could be a function of

C(x,&,1) = C(x,8) =

& . If we apply the theory to a numerical procedure using an

irregular mesh, we must consider as y = J(§) .
Then, we have

q(x,8,0) = —k(x,1)0C(x,&)

i 1 |};(—§|2
- _K(X’t)[]x|:(2nyz)3/2 exp[_ 2y2 ]:| >

5(x&0) = -0, fk(x,HN0C(x,8,0)- (u(x,) T,)C(x.&,1)

(14a)

_ 1 |x-§
_—(u(x,t)[l]]x)(znyz)3/2exp(— % ]

- 1 _Ix-gp
Dx EFK(XJ)D (2ny2)3/2 exp( 2y2 J:|a (14b)

where

P —E (=& +(=&) . (15)

Furthermore, when 5(x,e‘;,t) is defined as Eq. (13), and
y tends to zero, then C(x,E,7) and g(x,g,t) satisfy

C(x,E,1) - I(X,E), (16a)
S(x,8,1) - —(u(x,t) ,)I(x,8)
, 16b
-0, fk(x,00,3(x,8)] (169
where  J(x,€) is the Dirac’s delta function

O(x; = ¢)0(x;, =§,)0(x; = &;) -
At an internal point (IP), the left-hand side of Eq. (12)
becomes

= (u(x, ) M )C(x,1) + (0, I(x,0))C(x,1)

-0, dr(x,0)0,C(x,1)) Y

since
JIf,3@x.0c@nar,

(&) T)8E )
ol {—Dg e, 00,006, 0) &0

= (u(x,n) M) C(x, 1) + (U, t(x,1)C(x,1)
+[[] @ 00,06 0| m.cenar,

= (u(x,0) M)C(x,0) + (U, m(x,0))C(x,1)

-0, dr(x,n0,C(x,1)) (18)

At IP, the right-hand side of Eq. (12)
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- —%+J(x,t)+(ﬂx i(x,0))C(x,7),  (19)
since
- my@&g,x,t)dr@
taé( ) ocn’ 20
+[ L—g;"’ 0V - ===
-[[,a@nm.CEx.0ds,
~ ; (20b)
+[[aExnmCEnds, -0
+[[[ o@nCExnaV, - ax.1), (20¢)
-[[,uEnmLExNCE NS, -0, (20d)
+[[] . m@n)C@xncenar, 00

- (o, m(x,n)C(x,1)

Hence, the generalized integral representation, Eq. (12),
tends to the differential equation, Eq. (1), at IP.

If C(x,f) at an interior point (IP) and C(x,f) or
0C(x,t)/0n at a boundary point (BP) are known from the

boundary conditions, then GIR given by Eq. (12) is an
integral equation with 0C(x,#)/d¢ the unknown variable at

IP and dC(x,t)/dn or C(x,t) the unknown variable at BP.
We obtain C(x,t+dt) at IP from
C(x,t +dt) = C(x,t) +dtdC(x,1)/dt . Hence, if C(x,0) on

IP is known from the initial condition, then we can solve the
initial and boundary value problem using GIR given by Eq.

(12).

If we use another definition of Eq. (9), for example,

2 ~ - .
0.G(x,§)=9(x,&), then, Eq. (12) becomes the ordinary
integral representation in case of linear problem.

Now, we assume that the diffusion coefficient A(x,t)

and the abduction velocity u('x,¢) are given simply by
K(X,t) =K =const, (21a)
u(x,t) =U =const . (21b)

Furthermore, if we assume Eq. (13), Egs. (14) and (12) are
given by

A(x,8,0) = ~k(x,N0C(x,8)

_ L (xmeR )]s
) KD{(znyz)}/Zexp[ 2y H

5(x,5,0) = -0, Mk(x,)0C(x,,0)) - (u(x,0) T,)C(x,5,1)

g0l [Ixmer
- Efemed 57

(22a)

_ o1 _Ix-gf
K(X’I)Dx{(2]7y2)3/2 exp[ zyz ]:l s (22b)

Il 3exncenar,
N ‘WV%C’@,X,WVQ

_ H KN [h,C(&,x,0)dS, + ” L& X%,0 1, 1)ds,
+[[], e@.ncExnar,

—Uj.jsnga(é,x,t)c(‘;af)dsa , (23)

where U _[(x,#) =0 is assumed.

2.3. Further Generalization of the Integral Representation
or 2-Step Generalized Integral Representation
(2-GIRM)

We call the integral representation derived in 4.2 as 1-step
integral representation. We further generalize the theory and
derive 2-step integral representation. Now, we rewrite Eq. (2)
as

Non-uniformity equation:

0(x,7) =0.C(x,7) . (24a)
Constitutive equation:
q(x,1) = =K (x,0)0(x,7) . (24b)
Equilibrium equation:
9D 4 () I, )Cx.0)
ot (24¢)

=-0, [g(x,0) +o(x,1) ’

where a new variable 0(x,f) 1is introduced. The, we

define a generalized fundamental solution (GFS):
0G(x.8) = 3(x.) (25)
As a GFS, we can use the Gaussian function defined by
Eq. (13). Now, we consider to obtain GIRs corresponding to
the differential equations (24a) and (24c).
From Egs. (24a) and (25), we have

0=[[[ {Gxgnloen-0,c0u0)]

~Cx0[0,G(x.8) -3(x.8)far,

= IIIVG(X,g,t)B(x,t)dK

-[[] |6 o0,cn +Cxn0,Gx.5)ar,
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+[[], cxndxg)ar, 26)
Rewriting Eq. (26), we obtain
I[], cxnsxg)ar, =-[[f G(x.L0(x.0aV,
+[[ [6eon,coun +conn,Goplar, . (27)

Transforming the second integral on the right-hand side of
Eq. (27), we derive

[l cxndxgyar, ==[[[ Gxgexnar,

+[[,Gx8)Cx,0m, dS, . (28)
Exchanging x and & in Eq. (28), we obtain
[I], cendExar, =-[[] GExpEnHdv,
+[[,GExCE . ds, . (29)

Equation (29) is a GIR replacing the differential equation
(24a).
From Egs. (24c) and (25), we have

acéj D+ (u(x ,HM)C(x, t)]

G(x)
o=/, +00, [(x,0) - o(x,1)
+q(x,r)tﬁ3x6(x,a)—6(x,a)]

dv,

X

_ ~ 0C(x,1)

[ 6 2

+[] |Georumn m)cmn -Grdomnldr,
+[[[ [6eo)0, Mxn +a(x.n D,G(x8)]a7,

~[[], a0 B(x&)av, . (30)

Rewriting Eq. (30), we obtain
JIT, axn B oar, = [[f, G X0
+[[], GxB)uenmHCx v,

-[[], 6x.0)a(x, 0y av,
+J[[ bxon. men+axnmexalr, (31
Transforming the second and forth integrals on the

right-hand side of Eq. (31), we derive

aC(x )

[If,axnBxav, = [[[, Goxo="=ar,

-[1], b.éxp)amncenar,

+[[ GERCE (N b, dS,

~J[[, 6o, + [ Gxpanmds,  (32)
Exchnging x and & in Eq. (32), we obtain

I1f, a0 Bexar, = [Jf, Gen *=Dar,

_”.[, (Déé@’x))m(i,t)C(é,t)dl@

+[], GEXCE NuE.n i, ds,

~[If, Gemotnar, + [[ Gexacnm,ds, . (33)
Equation (33) is a GIR replacing the differential equation

(24c).
We can obtain the solution using the following steps:

Solution: From Eq. (29), C(x,?) - 0(x,¢) ; from Eq.
(24b), 0(x,?) - q(x,?) ; from Eq. (33),
C(x,1), q(x,t) » 0C(x,1)/0t ; OC(x,1)/0t —» C(x,t+dt) ;

repeat

3. Numerical Results by 2-Step
Generalized Integral Representation
(2-GIRM)

Since numerical examples using 1-GIRM are given in Ref.
[4], we discuss only the applications of 2-GIRM. We
consider initial value problem in infinite region. We assume
the boundary values at infinity are zero. For simplicity, Eq.
(21) is assumed. The time evolution is calculated explicitly.
More specifically, we use Euler method. The material source
O is assumed zero. We use the Gaussian type fundamental
solutions in Appendix A.

From Egs. (29), (24b) and (33), we have

[[[,cendexav, =-[[] GexoEndarv,, @4

q(X,t) =-Kk0(x,1) s (35)
[[[ aenBeExar, =[] Gex )OC@ D gy,
-UUL"%?")C@,W . (36)

respectively.
3.1. 1D Problem

We approximate the infinite region by a finite one
—L <x <L and discretize the finite region as
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2L

dx==—, x;,=-L+idx, i=0,L---,M  (37ab)
M
C" =C(x,,ndf), 6" =8x,ndl), ¢ =q(x;,ndt). (38a,b,c)
The discretization of Egs. (34), (36) and (35) is given for
i=0,1,---,N-1 by
N-1

ZJ.: dx/ZJ(é.x)dé-C(n)_ ZJ' j dx/ZG(('(x)erH(”) (39)

Jj=

ql(n) — _Kei(n) , (40)
T vy = +dx/2 oC m
[0 xdeq) = Zj p G ,)df[ j
J=0 J
J-l x'+dx/265(gt x.)
_ J NS (n)
U o€ @)
Rewriting, we have for i =0,1,---, N -1
- ( < )
S D,C0 =368, (42)
j=0 Jj=0
ql(n) - _ Hi(n) , (43)
& (n) ey aC o I (n)
D,q\" =" GU(EJ UZHUCJ , (44)
Jj=0 j=0 j J

respectively, where the matrices D, G and H are given
by

D, j & ”/za(fx)d{

(45a)

xj +dx/2 ~
G"f = .[x —dy/2 G(&,x)d¢ > (45b)
H,=| o #120G (&, 06G(.%) 4z | (45¢)

xj —dx/2 a{

The matrix G is nonsingular. Hence, if the algebraic
vector C" is known, we can obtain the algebraic vector
0" solving Eq. (42). Then, the algebraic vector q"/ is
determined by Eq. (43). Now, the algebraic vector
(C/at) ™ is obtained solving Eq. (44), and the algebraic
vector C"*" is obtained explicitly by

(n)
cr =™ +(—‘2Cj dr . (46)
t

If we use the implicit method, the solution would be much
more stabilized. However, for simplicity, we adopt the

explicit solution or Euler solution for the numerical
examples below.
The initial condition is given by

1/(3L/4) when|-2L/4<x<L/4
Cey < [VOLH when|-2ifascsijs
0 otherwise
or
co = 1/(3L/4) .when |-2L/4<x, < L/4. 48)
0 otherwise
The exact solution for this problem is known as
_(x=&-Un* Un?

C(x,t):jwzr dé .

The spurious oscillation or numerical oscillation is
reduced using the additional calculation at every time step
given by [6]

2
+
Cet s adCEot+dD)
d

S Clx,t+dt),  (50)

where @ is a parameter to reduce the spurious oscillation.
More specifically, we have

C(n+1) +g—— (C(n+l) 2C.(n+l) +C~("+1)) N C~("+1) . (51)

A temporal value of C"*" calculated by Eq. (46) is
corrected by Eq. (51) before advancing to the time step
n+l.

The parameters for the numerical calculations are shown
in Tab. 1. The numerical results are shown in Figs. 1-3. As
shown in Fig. 1, if the number of division N is increased,
the computational errors are reduced, and the numerical
solution converges to the exact one. Figures 2 and 3 show
the effect of the noise reduction parameter & . The results
are compared with those by the upwind differencing. The
upwind differencing usually gives an excessive artificial or
numerical diffusion. GIRM with noise reduction parameter
a gives more reasonable result.

Table 1. Parameters for numerical calculation.

Symbol  Definition Value

L Hal.f length of computational 6
region

N Number qfdivisiop of 21.41.81,161.321
computational region

K Coefficient of diffusion 0.01

U Advection velocity 1
Scale of GFS (Genelarized

y Fundamental Sol.) 0.48,0.24,0.12,0.06,0.03
gam ~ dx

a Noise reduction parameter 0,0.00000625,0.000025

dt Time increment 0.00025
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0.320250 ——t= 0.320250
D30 0.640250 030 () - - -t= 0640250
025 0.960250 025 0 . cvcct= 0080250
0.20 1.280250 0.20 S =--t= 1280250
0.15 1.600250 045 L 1.600250
o 0.10 © 0.10
0.05 0.05
0.00 0.00
-0.05 '
. . . : . : ; 0.05+— . - , ‘ .
6 4 i 0 2 4 6 6 B 0 2 4 6
X X
——t= 0.320250 — ——t= 0.320250
028 © - - -t= 0.640250 ‘ @ - - -t= 0.640250
oo i s oo t=0.960250 0.20 ) - t= 0.960250
Vi == t= 1.280250 = 1.280250
015 Bl 1,600250 0.15 1.600250
o o.10 o 0.10
005 0‘05
o0 0.00
-00s T T T T T T T ‘ * T T T T T T
-6 -4 -2 0 2 4 B -6 -2 0 2 4 6
x X
——t= 0.320250 ——t= 0.320250
; 0.25
0.25 - = -t=  0.640250 0 - - t= 0840250
0.20 0.960250 0.20 ‘o= 0.860250)
1.280250 —-— t= 1.280250
043 1.600250 0.15 -.-1t= 1600250
© 0.10 © o010
0.05 0.05

0.00

6 4

x o4
[}
s
@

0.00

Figure 1. Solution by GIRM (@ =0, @ N =21, y=048, 1) N =41, y=024;) N=81, y=0.12;@ N =161, y=0.06;
(e) N =321, Yy =0.03; () exact solution)

0.320250
030 0.640250 0.25
0.25 0.960250 s
0.20 1.280250 :
015 1.600250 0.15
o 0.10 0.10
0.05 0.05
0.00 0.00
-0.054 ; -0.054
6
0.320250 Son
028 0.640250
0.20 0.960250 020
1,280250
0.15 1600250 0.15
o 0.10 010
0.05 0.05
0.00 0.00
‘ 6
0.320250 0.25
08 0.640250 )
0.20 0.960250 0.20
1.280250
0.15 1.600250 033
© 0.10 0.10
0.05 0.05
0.00

0.00

a
ES
N
x O
(53
a
o

4 2 rl') 2 4 6

Figure 2. Comparison among GIRM, FDM (upwind differencing) and exact solutions (N =41,y =0.24; (@) GIRM, a =0; () GIRM, a =0,
t=1.6; ) GIRM, a =0.000025; @ GIrRM, a =0.000025, ¢t =1.6; (¢) FDM (upwind differencing); (f) FDM (upwind differencing),
t=1.6)
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—t= 0320250
0.25 - - -t= 0.640250
e (a) : 0.960250
1.280250
0.15 1.600250
o 0.10
0.05 ; :
0.00 Lo —
0051 3
5 4 2 0 2 4 [3
X
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0.20 (©) L.oot= 0.960250
VL= =t= 1280250
0.15 . = 1.600250
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X
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0.15 K 1600250
©Q 0.10
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0.00

—cC
0.25 - = -Cex
0.20 ®)
0.15
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-0.05-4

025
0.20
0.15
o} 0.10

0.05

0.00

0.25
0.20
0.15
o 0.10
0.05

0.00

Figure 3. Comparison among GIRM, FDM (upwind differencing) and exact solutions (N =81,y =0.24; (a) GIRM, a =0, (») GIRM, a =0,
t=1.6; (c) GIRM, a =0.00000625; @ GIRM, a =0.00000625, t =1.6; (e) FDM (upwind differencing), (f) FDM (upwind differencing),

t=1.6)

3.2. 2D problem

Before the discretization, we introduce a mapping of

numbering from 2D numbering i=0,1,,---,M -1 ,
j=0,1,,---, N=1 to 1D numbering i =0,1,,---, MN —1:
i=Mj+i, (52a)

i=i-liim|, j=[irml. (52b)

We approximate the infini te region by a finite region

—-L<x<L, -B<y<B and discretize the finite region as
2L 2B

dx=—, dy=—, 53a

v YTy (532)

x;Z—L+idx, y{:—B+jdy, (53b)
The values at node lA are defined as

™ =C(x;ndy) . 0" =0(x;,ndt) . o =q(x;,nd) .

(54a,b,c)
The discretization of Egs. (34), (35) and (36) is given for
i=0,1,---,M -1 by

MN-1 dx/2 ¢ y3+dy)2~ n

}‘Z(; Ix.f‘dx/zjy_; (;1/26(ég )dfdﬂCjE )
dx/2 p yrtdy/2 ~

- _ZJ‘Y —dx/ZJ‘yj d/ZG(g

q" =-x0", (56)

. (55)
)dédne"

MN=1 vada oy

Z.[ —dx/z-‘- d/zﬁ(é’ I)dfd/]ﬂl(")

MN -1

(n)
— x}+dx/2 +dy/2 ~ aC
) Z J.".}"dx/ZJ.yJ d/zG(é’ z)dfdﬂ( o ),

_ x5+dx/2 yj+dy/2aG(E.: X ) (n)
U Z .[ —abc/zj Gdv/2 o0& dfd,? C} ’ (57)

Rewriting, we have for i= 0,1,---, MN -1

MN-1 ( ) MN-1 )
ZD C = ZGI/HX/

MN-1

ZD c‘"> = ZGUH;J”)

(58a,b)
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(n) — ) (n) — _ (1)
(k8D g =KE)  (soab)
MN-1 o MN-1 o
n n
szf]' 94 + ZDyf]' 9
= 7=
(60)

=3, (G_CJ v en
i R 4 [/
ot J; J=0

Jj=0

respectively, where the matrices Dp (P=%Y),G and H
are given by

N +dx[2 0y jHdy/22
Dy = J-xj -dx/z-[.v; -y O & XA, Ol
Y +dx/2 v +dy[2 ~
Gz’]‘ - L-,"- —dy/2 jv}' ~dy/2 GG x;)dedn (10
= JAX‘} +dx/2J~ ¥; +dt’/2md{d,7 . (61c)

X3 —dx/2

vt 0§

The matrix G is nonsingular. Hence, if the algebraic
vector C" is known, we can obtain the algebraic vector
6;,”) solving Eq. (55). Then, the algebraic vector q(p”) is
determined by Eq. (56). Now, the algebraic vector
(6C/6t)(”) is obtained solving Eq. (57), and the algebraic

vector C"*" is obtained explicitly by

(n)
cr =c” +(%—fj dr. (62)

If we use the implicit method, the solution would be much
more stabilized. However, for simplicity, we adopt the
explicit solution or Euler solution for the numerical
examples below.

The initial condition is given by

1/(9BL/16) when -2L/4<x<L/4

C(x,y,0)= and|-2B/4<y<B/4. (63)
0 otherwise
or
1/(9BL/16) when —2L/4<x. < L/4
= and|-2B/4<y. <B/4.  (64)
0 otherwise
The exact solution for this problem is known as
o co C(E.7.0) _=EUn+ ()
Clryn=[ [ = W dgn. (65)

47t

The spurious oscillation or numerical oscillation is

reduced using the additional calculation at every time step
given by [6]
0*Clx,t +dr) , 0°Clx, +d1)

ox’ ay’ . (66)

C(x,y,t+dt) +a{
- C(x,y,t +dt)

where @ is a parameter to reduce the spurious oscillation.
More specifically, we have

1
—lear -acemwei)
X

C;(n+l) +a N C;(M) . (67)

| )
(n+l) _ (n+l) (n+1)
+dy2 C{+M 2Ci +Cf—M

A temporal value of le””) calculated by Eq. (62) is

corrected by Eq. (67) before advancing to the time step
n+l.

The parameters for the numerical calculations are shown
in Tab. 1. The numerical results are shown in Figs. 4-7. As
shown in Fig. 4, if the numbers of division M and N are
increased, the computational errors are reduced, and the
numerical solution converges to the exact one. Figures 5 and
6 show the effect of the noise reduction parameter & . The
results are compared with those by the upwind differencing.
The upwind differencing usually gives an excessive artificial
or numerical diffusion. GIRM gives more reasonable
artificial diffusion.

Table 2. Parameters for numerical calculations

Symbol Definition Value
Half length and breadth of

L. B computational region g

M. N Number qf d1v1s1qn of 214161
computational region

K Coefficient of diffusion 0.01
Advection velocity 1
Scale of GFS (Genelarized

y Fundamental Sol.) 0.48,0.24,0.16
gam ~ dx, dy

a Parameter for noise reduction (2)’50'0000125’0'0000

dt Time increment 0.00025
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Figure 4. Solution by GIRM(a =0, y:(); (a) N =21, y:0.48 ;) N =41, y:0.24; (c) N =61, y:0.16; (d) Exact solution)
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Figure 5. Comparison among GIRM, FDM (upwind differencing) and exact solutions (N =21, y= 0.48, y= 0; (a) GIRM, a =0 (a) GIRM,
a=0, t=1.6;«) GIRM, a =0.000025; @) GIRM, a =0.000025, ¢ =1.6, (e) FDM (upwind differencing); (f) FDM (upwind differencing),
t=1.6)
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4. Conclusions

In the present paper, an innovative generalization of the
integral  representation or  Generalized Integral
Representation (GIR) was proposed. The idea was applied to
the problem of advective diffusion. Ordinary, we define the
fundamental solution first and then apply it to obtain the
integral representation. On the other hand, in the generalized
theory, the fundamental function is chosen first, and the
differential equation satisfied by the fundamental solution is
defined properly reflecting the fundamental solution and the
boundary value problem. For example, we could use the
Gaussian function as the generalized fundamental solution.
This approach could extend the applicability of the integral
representation method.

We conducted numerical calculations of 1D and 2D
problems and demonstrated the effectiveness of Generalized
Integral Representation (GIRM). Stable and precise results
were obtained in an admissible time.

Appendix A. Generalized Fundamental
Solutions

We can define various types of generalized fundamental
solutions. However, we show only four types below.

Although the 3D forms are shown, the 1D and 2D forms
can be obtained easily.

A.1. Gaussian Type

The generalized fundamental solution of Gaussian type in
3D is given by

G(x,8) = G,(x, )G, (v,MG\(2,0) , (Ala)
where
~ 1 (x=&)°
G (x,&) = - .
(%, &) mye"p( 2 ) (Alb)
We have
L:{;l (x,&)dx = %erf(f/%i] , (A2a)
&~ _1 E—x
[, G&nas = 2erf( ﬁy], (A20)
X2~ xj+dx/2—x
G(&,x)dé =—erf| L—+——
GG ef( N )
(A3)

1 ; x; —dx/2-x
-—erf| t——
2" NEY%

From Eq. (24)

X ’MzaG({ x)
Y
= G(xj +dx/2,x) —G(xj —dx/2,x)

Jnsenae=];

(A4)

A.2. Cos-Hyperbolic Type

The generalized fundamental solution of cos-hyperbolic
type in 3D is given by

G(x,8) = G,(x, )G, (3,1)G\(2,4) » (AS5a)
where
~ 1
G(x,¢é)= .
) = Tenl—ayy) A
We have
3G, (x,¢) sinh((x - &)/y)
o(x, =- - , (A6
(68 =" y| y| cosh*((x=&)/y) (A6)

X j+dx/2 1

d
x;=42 77| | cosh((& = x)/y) ¢

_ 2y tan”! (e(xj' —x+¢Lt/2)/y) —tan”! (e(xj' —x—dx/Z)/y)]' (A7)
|yl

From Eq. (24)
dx/26G 0G, (,x)

a2 Q&
=G1(xj +dx/2,x)—Gl(xj —dx/2,x)

+dx/2~
v[j d/ZJ(E x)dg J. (A8)
A.3. Lucy Type

The following is an approximation to Dirac’s delta
function proposed by Lucy [7]:

105 1 Ix-glY, |x-g|}
G(x8)= 167'[0‘[+3 o Il o ) x §|SU. (A9)

0 |x=E>0

A.4. Traditional Type

The following is the well known fundamental solution of
Laplace operator :

T S

G(x,8)= -] (A10)
0,658 =068 = |S‘_‘§|{ @)

02G(x,8) = 3(x &) (A12)



Applied and Computational Mathematics 2014; 3(4): 137-149 149

References

(1]

(2]

(3]

(4]

Wu J.C., Thompson J.F., ‘“Numerical solutions of
time-dependent incompressible Navier-Stokes equations
using an integro-differential formulations”, Computers &
Fluids, (1973), 1, pp. 197-215.

S. J. Uhlman, “An integral equation formulation of the
equations of motion of an incompressible fluid”,
NUWC-NPT Technical Report 10,086, 15 July, (1992).

H. Isshik, S. Nagata, Y. Imai, “Solution of Viscous Flow
around a Circular Cylinder by a New Integral Representation
Method (NIRM)”, AJET, 2, 2, (2014), pp. 60-82.
file:///C:/Users/l/Downloads/983-5001-1-PB%20(1).pdf

H. Isshik, S. Nagata, Y. Imai, “Solution of a diffusion
problem in a non-homogeneous flow and diffusion field by
the integral representation method (IRM)”, Applied

[5]

Mathematics and Computation, 3(1), (2014), pp. 15-26.
http://article.sciencepublishinggroup.com/pdf/10.11648.j.ac
m.20140301.13.pdf

H. Isshiki, “Improvement of Stability and Accuracy of
Time-Evolution Equation by Implicit Integration”, Asian
Journal of Engineering and Technology (AJET), Vol. 2, No.
2 (2014), pp. 1339-160.
file:///C:/Users/l/Downloads/1205-5161-1-PB.pdf

H. Isshiki, A method for Reduction of Spurious or Numerical
Oscillations in Integration of Unsteady Boundary Value
Problem, AJET, 2, 3, (2014), pp. 190-202.
file:///C:/Users/l/Downloads/1360-5725-2-PB%20(2).pdf

L. B. Lucy, “A numerical approach to the testing of the
fission hypothesis”, The Astronomical Journal, vol. 82, no.
12 (1977), pp. 1013-1024.
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query
?71977AJ.....82.1013L&defaultprint=Y ES&filetype=.pdf.



