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Abstract: The zeros and asymptotic limits of two new classes of orthogonal polynomials, which are derived by applying 

two orthogonalization procedures due to Löwdin to a set of monomials, are calculated. It is established that they possess all 

the properties ofthe zeros of a polynomial. Their asymptotic limits are found. A Unified view of all the Löwdin orthogonal 

polynomials together with the standard classical orthogonal polynomials are presented in a unique graph. 
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1. Introduction

Various methods of obtaining orthogonal polynomials, its 

zeros, asymptotic limits and their applications to various 

branches have been in regular progress. The classical 

orthogonal polynomials such as the Legendre, Hermite, 

Laguerre etc. obtained from a set of 

monomials/functions ����, � � 0, 1, 2, … , ∞, are 

orthogonal and orthonormal in a given interval [a, b] with 

respect to a weight function ���� . The Gram-Schmidt 

orthogonalization method [1] sequentially generates them 

upto any order without having any restriction on the order of 

the polynomials. Hence they do not have any asymptotic 

limits on their generation. 

We have extended the application of the Löwdin 

orthogonalization procedures to a set of monomials 

����, � � 0, 1, 2, … , ∞, for the classical orthogonal 

polynomials such as the Chebyshev I, Chebyshev II, 

Gegenbauer, Jacobi and Bessel polynomials with their 

respective weight functions and limits of integration. 

The repetition of this procedure with Löwdin's symmetric 

and canonical orthogonalizations [2, 3, 4] have restrictions 

on the generation of these two new classes of orthogonal 

polynomials. Though their properties such as zeros and 

asymptotic limits satisfy most of the properties of a 

polynomial, yet the Löwdin orthogonalization methods have 

a restriction on the generation of new polynomials because 

of the positive-definiteness of the Hermitian metric matrix 

formed from the inner product of two consecutive 

monomials for higher values of �. 

2. Classical Orthogonal Polynomials 

The classical orthogonal polynomials such as the 

Legendre, Hermite, Laguerre etc. are obtained from a set of 

monomials/functions ����, � � 0, 1, 2, … , ∞, which are 

orthogonal and orthonormal in a given interval [a, b] with 

respect to a weight function ����. They can be generated 

one by one using the Gram-Schmidt orthogonalization 

procedure using a given set of monomials/functions. These 

set of monomials/functions can be taken one at a time in an 

increasing order. The polynomials obtained are a direct 

consequence of the choice of particular interval and weight 

function. The use of monomials with different choice of 

intervals and weight functions leads to different sets of 

orthogonal polynomials. In fact, these polynomials are 

solutions of particular differential equations. The choice of 

interval, weight function, orthogonality and 

orthonormalization conditions for different orthogonal 

polynomials are listed in Table 1. 

 



58 Ramesh Naidu Annavarapu and Vipin Srivastava:  Zeros and Asymptotic Limits of Löwdin Orthogonal Polynomials  

with a Unified View 

Table 1.List of the choice of interval, weight function, orthogonality and Orthonormalization conditions for different classical orthogonal polynomials 

Sl. No. Name of the Polynomial 
Interval 

[a, b] 
Weight Functionw(x) Orthogonality Condition Orthognormality Condition 

1. Legendre [-1, 1] 1 � ������������
�

��
 � �������� � 1

�

��
 

2. Hermite [-∞,∞] ����
 � �����������

∞

��
 � �������� � 1

∞

�∞

 

3. Laguerre [0, ∞] ��� � ������������
∞

�
 � �������� � 1

∞

�
 

4. Chebyshev I [-1, 1] �1  �����/� � "����"������
�

��
 � "������� � 1

�

��
 

5. Chebyshev I [0, -1] �1  ����/� � "����"������
�

��
 � "������� � 1

�

��
 

6. Gegenbauer [-1, 1] �1  ���#��/� � $����$������
�

��
 � $������� � 1

�

��
 

7. Bessel [0, ∞] � � %����%������
�

��
 � %������� � 1

∞

�
 

8. Jacobi [-1, 1] �1  ��#�1 & ��' � (����(������
∞

�
 � (������� � 1

�

��
 

 

3. Löwdin Methods for Functions 

The Gram-Schmidt procedure sequentially 

orthogonalizes a given set of linearly independent 

monomials. The two methods due to Löwdin are democratic 

in the sense that they handle all the given monomials 

simultaneously and treat them on equal footing. The 

derivation of the two procedures is described in detail in 

references [2, 4]. However, we have briefly given their 

derivation here for completeness and to highlight the 

interesting properties they possesses. 

Consider a set of linearly independent 

monomials/functions ) �  ����, � � 0, 1, 2, … , ∞. We can 

define a general non-singular linear transformation * for 

the basis ) to go to a new basis +: 

+ � )*                     (1) 

The set +�, �-.�� will be orthonormal if 

/ +|+ 1 � / )*|)* 1 �  * / )|) 1 * �  * 2* � 3 (2) 

where 2 is a Hermitian metric matrix of the given basis ). 
For any consecutive monomials 5���  and 6���  of ), 

the Hermitian metric matrix can be constructed using 

2 �  278 �  9 ����5:���6�����;
<         (3) 

 

 

4. Positive Semi-Definite Matrix and 

Asymptotic Limits 

The new classes of orthogonal polynomials [7] are 

obtained by constructing the Hermitian metric matrix from 

the given set of monomials and then finding its eigenvalues 

and eigenvectors. Now using the computed eigenvectors = 

of 2 and =� ����/�, the symmetric and canonical orthogonal 

polynomials are constructed by multiplying them 

respectively by the set of monomials �� 's. As the order � 

of the monomials increases, the Gram matrix becomes 

positive semi-definite which results in getting some of its 

eigenvalues negative which in turn produces complex 

eigenvectors. This puts a serious limit on finding the new 

sets of Löwdin orthogonal polynomials for higher values 

of�. We have thoroughly checked the asymptotic limits of 

all the new classes of Löwdin orthogonal polynomials by 

increasing the order of the monomials one by one. 

The asymptotic limits in the case of Löwdin-Legendre, 

Löwdin-Chebyshev type I and type II polynomials is � = 8; 

for Löwdin-Hermite polynomials, it is 13; for 

Löwdin-Jacobi polynomials, it is 10 and for Löwdin-Bessel 

polynomials, it is 6. Because of the positive semi-definite 

nature of the Gram matrix, the Löwdin-Bessel and 

Löwdin-Laguerre polynomials begins to show signs of not 

being so accurately orthogonal as early as � = 3. 
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5. Zeros and Their Properties 

We have computed the zeros of all the Löwdin orthogonal 

polynomials and they are listed in Tables from 2 to 8. The 

zeros are both real and complex for both the cases of two 

new sets of Löwdin polynomials. The zeros of these two 

new families of orthogonal polynomials satisfy all the 

properties possessed by the zeros of classical orthogonal 

polynomials. These zeros are real and distinct in the interval 

[a, b] and are located in the interior of the interval. Each 

interval comprises precisely unique root only. There are 

cases where the zeros are imaginary but is of incisively 

single root. The real or imaginary root lies either in the 

interval [a, b] or in the exterior of [a, b]. 

Table 2. Zeros of Löwdin-Legendre Orthogonal Polynomials 

Löwdin-Legendre Löwdin-Legendre 

Symmetric Polynomials Canonical Polynomials 

N = 2: N = 2: 

1.2224;  -1.2224 0 + 1.6618 i; 0  -0.6618 i 

0 0 

0.5067;  -0:5067 0.6017;  -0.6017 

N = 3: N = 3: 

1.2224;  -1.2224 0 + 1.6618 i; 0-0.6618 i 

0; 1.0727;  -1.0727 0; 0 + 1.2585 i; 0 – 1.2585 i 

0.5067;  - 0.5067 0.6017;  - 0.6017 

0; 0.6895;  - 0.6895 0; 0.7946;  - 0.7946 

N = 4: N = 4: 

- 1.2632 + 0.3623 i;  

- 1.2632 + 0.3623 i; 

- 0.7925 + 1.1907 i;  

- 0.7925 + 1.1907 i; 

1.2632 + 0.3623 i;  

1.2632 0.3623 i 

0.7925 + 1.1907 i;  

0.7925 + 1.1907 i 

0; 1.0727; - 1.0727 0; 0 + 1.2585 i; 0 - 1.2585 i 

1.0246; - 1.0246;  

0.4050;  - 0.4050 

0 + 1.2147 i; 0 - 1.2174 i;  

0.6553;  - 0.6553 

0; 0.6895; 0.6895 0.0.7946; - 0.7946 

0.7880; - 0.7880; 

0.2548; - 0.2548 

0.8739; - 0.8739;  

0.3571; - 0.3571 

Table 3. Zeros of Löwdin-Hermite Orthogonal Polynomials 

Löwdin-Hermite Löwdin-Hermite 

Symmetric Polynomials Canonical Polynomials 

N = 2: N = 2: 

1.7070; -1.7070 0 + 1.1318 i; 0-0.1318 i 

0 0 

0.5412; - 0.5412 0.8836;  -0.8836 

N = 3: N = 3: 

1.7070; -1.7070 0 + 1.1318 i; 0 - 0.1318 i 

0; 1.8210; -1.8210 0; 0 + 0.6633 i; 0 - 0.6633 i 

0.5412; - 0.5412 0.8836; -0.8836 

0; 0.8212; -0.8212 0; 1.5077; -1.5077 

N = 4: N = 4: 

2.5712; -2.5712; -0.3391 + 0.5150 i; -0.3391- 0.5150 i; 

1.6493; - 1.6493 0.3391 + 0.5150 i; 0.3391- 0.5150 i 

0; 1.8210; - 1.8210 0; 0 + 0.6633 i; 0- 0.6633 i 

2.0486; -2.0486;  

0.4980; -0.4980 

1.6727; -1.6727;  

0 + 1.2408 i; 0- 1.2408 i 

0; 0.8212; - 0.8212 0.1.5077; - 1.5077 

0.9935; - 0.9935;  

0.3546; - 0.3546 

1.9016; - 1.9016;  

0.6225; - 0.6255 

Table 4. Zeros of Löwdin-Laguerre Orthogonal Polynomials 

Löwdin-Laguerre Löwdin-Laguerre 
Symmetric Polynomials Canonical Polynomials 
N = 2: N = 2: 
6.3403; 2.5447 -0.1283 + 0.2739 i; -0.1283- 0.2739 i 
4.6922; 0.4489 3.5984;  -1.0616 
1.0590; 0.3054 4.3666; 0.8539 
N = 3: N = 3: 

8.9828; 5.0553; 2.4933 -0.2045; 0.0180 + 0.2005 i;  

0.0180 - 0.2005 i 

8.1509; 3.5793; 0.3981 4.7558; 0.2666 + 0.5458 i;  

0.2666 - 0.5458 i 
6.7333; 1.1750; 0.2451 6.6737; 2.1710;  -1.1358 
1.0398 + 0.6141 i;  

1.0398 - 0.6141 i; 0.1819 7.4195; 2.9634; 0.5803 

Table 5. Zeros of Löwdin-Chebyshev I Orthogonal Polynomials 

Löwdin-Chebyshev I Löwdin-Chebyshev I 

Symmetric Polynomials Canonical Polynomials 

N = 2: N = 2: 

1.2069;  -1.2069 0 + 1.3431 i; 0 - 1.3431 i 

0 0 

0.6079;  -0.6079 0.7446;  -0.7446 

N = 3: N = 3: 

1.2069;  -1.2069 0 + 1.3431 i; 0 - 1.3431 i 

0; 1.0801; -1.0801 0; 0 + 1.1317 i; 0 - 1.1317 i 

0.6079;  -0.6079 0.7446; -0.7446 

0; 0.7746;  -0.7746 0; 0.8836; -0.8836 

N = 4: N = 4: 

1.3141 + 0.2664 i;  

1.3141 - 0.2664 i; 

0.6448 + 1.0232 i;  

0.6448 - 1.0232 i; 

-1.3141 + 0.2664 i; 

-1.3141 - 0.2664 i 

-0.6448 + 1.0232 i;   

-0.6448 - 1.0232 i 

0; 1.0801;-1.0801 0; 0 + 1.1317 i; 0 - 1.1317 i 

1.0379; -1.0379;  

0.4522;-0.4522 

0 + 1.2176 i; 0- 1.2176 i;  

0.8048;  -0.8048 

0; 0.7746;  -0.7746 0; 0.8836;  -0.8836 

0.8579; - 0.8579;  

0.2704; -0.2704 

0.9327; - 0.9327;  

0.4048; -0.4048 

Table 6. Zeros of Löwdin-Chebyshev II Orthogonal Polynomials 

Löwdin-Chebyshev II Löwdin-Chebyshev II 

Symmetric Polynomials Canonical Polynomials 

N = 2: N = 2: 

1.2237; - 1.2237 0 + 1.9403 i; 0 -s 1.9403 i 

0 0 

0.4473; - 0.4473 0.5154; - 0.5154 

N = 3: N = 3: 

1.2237; - 1.2237 0 + 1.9403 i; 0 - 1.9403 i 

0; 1.0622; - 1.0622 0; 0 + 1.3791 i; 0 - 1.3791 i 

0.4473; - 0.4473 0.5154;  - 0.5154 

0; 0.6341; - 0.6341 0; 0.7251; - 0.7251 

N = 4: N = 4: 

1.2254 + 0.3923 i;  

1.2254 - 0.3923 i; 

0.9213 + 1.3444 i;  

0.9213 - 1.3444 i; 

-1.2254 + 0.3923 i;  

-1.2254 - 0.3923 i 

-0.9213 + 1.3444 i;  

-0.9213 - 1.3444 i 

0; 1.0622; -1.0622 0; 0 + 1.3791 i; 0 - 1.3791 i 

1.0101; -1.0101;  

0.3721; -0.3721 

0 + 1.2428 i; 0 - 1.2428 i; 

0.5561; -0.5561 

0; 0.6314; -0.6314 0.0.7251; -0.7251 

0.7367; - 0.7367;  

0.2409; - 0.2409 

0.8232; - 0.8232;  

0.3232; - 0.3232 
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Table 7. Zeros of Löwdin-Bessel Orthogonal Polynomials 

Löwdin-Besesl Löwdin-Bessel 
Symmetric Polynomials Canonical Polynomials 
N =2: N = 2: 
1.1524 + 0.3810 i;  

1.1524 - 0.3810 i 
-0.6414 + 1.1812 i;   

-0.6414 - 1.1812 i 
1.0109; 0.3891 -1.3047; 0.7346 
0.7385; 0.2220 0.8546; 0.3691 
N =3: N = 3: 
1.1041;0.6261+0.6963 i; 

0.6261 – 0.6963 i  -1.2925; 0.0420 + 1.2805 i;  

0.0420 - 1.2805 i 
0.8845 + 0.1484 i; 

0.8845 – 0.1484 i;0.3003 
 
 

-0.7969 + 0.9625 i;   

-0.7969 - 0.9625 i; 0.7638 
0.9699; 0.6040; 0.1809  -1.2223; 0.8743; 04141 
0.8463; 0.4863; 0.1635  0.9188; 0.6087; 0.2079 

Table 8. Zeros of Löwdin-Jacobi Orthogonal Polynomials 

Löwdin-Jacobi Löwdin-Jacobi 

Symmetric Polynomials Canonical Polynomials 

N = 2: N = 2: 

1.2234;  -1.2234 0 + 2.1867 i; 0 - 2.1867 i 

0 0 

0.4059;  -0.4059 0.4574;  -0.4574 

N = 3: N = 3: 

1.2234;  -1.2234 0 + 2.1867 i; 0 - 2.1867 i 

0; 1.0497; -1.0497 0.4574; - 0.4574 

0; 0.5892; - 0.5892 0; 0.6700; - 0.6700 

N = 4: N = 4: 

1.1933 + 0.4410 i;  

1.1933 - 0.4410 i; 

1.0332 + 1.4819 i;   

1.0332 - 1.4819 i; 

-1.1933 + 0.4410 i;   

-1.1933 - 0.4410 i 

-1.0332 + 1.4819 i;  

-1.0332 - 1.4819 i 

0; 1.0497; - 1.0497 0; 0 + 1.4925 i; 0 - 1.4925 i 

0.9917; - 0.9917;  

0.3459; -0.3459 

0 + 1.2832 i;  0 - 1.2832 i;  

0.4882; - 0.4882 

0; 0.5892; - 0.5892 0.0.6700; - 0.6700 

0.6796; - 0.6796;  

0.2304; - 0.2304 

0.7792; - 0.7792;  

0.2967; - 0.2967 

Table 9. Löwdin-Legendre Symmetric and Canonical Coefficients 

Löwdin-Legendre Löwdin-Legendre 

Symmetric Orthogonalization Canonical Orthogonalization 

N = 2: N = 2: 

s0 = 1.0782; s1 = 0; s2 = -0.3933 c0 = 0.7038; c1 = 0; c2 = 0.1516 

s0 = 0; s1 = 1.2247; s2 = 0 c0 = 0; c1 = 1.2247; c2 = 0 

s0 = 0.1759; s1 = 0; s2 = 1.5315 c0 = - 0.0678; c1 = 0; c2 = 1.5739 

N = 3: N = 3: 

s0 = 1.0782; s1 = 0;  

s2 = - 0.3933; s3 = 0 

c0 = 0.7038; c1 = 0;  

c2 = 0.1516; c3 = 0 

s0 = 0; s1 = 1.1059;  

s2 = 0; s3 = - 0.8034 

c0 = 0; c1 = 1.2160;  

c2 = 0; c3 = 0.2227 

s0 = 0.1759; s1 = 0;  

s2 = 1.5315; s3 = 0 

c0 = - 0.0678; c1 = 0;  

c2 = 1.5739; c3 = 0 

s0 = 0; s1 = 0.5260;  

s2 = 0; s3 = 1.6896 

c0 = 0; c1 = - 0.1456;  

c2 = 0; c3 = 1.8576 

N = 4: N = 4: 

s0 = 0.6806; s1 = 0;s2 = -0.4261; c0 = 0.6993; c1 = 0; c2 = 0.2312; 

s3 = 0; s4 = 0.0705 c3 = 0; c4 = 0.0325 

s0 = 0; s1 = 1.1059; s2 = 0; c0 = 0; c1 = 1.2160; c2 = 0; 

s3 = - 0.8034; s4 = 0 c3 = 0.2227; c4 = 0 

s0 = 0.1700; s1 = 0; s2 = 1.2476; c0 = - 0.1041; c1 = 0; c2 = 1.5502; 

s3 = 0; s4 = - 1.1994 c3 = 0; c4 = 0.2783 

s0 = 0; s1 = 0.5260; s2 = 0; c0 = 0; c1 = - 0.1456; c2 = 0; 

s3 = 1.6896; s4 = 0 c3 = 1.8576; c4 = 0 

s0 = 0.0893; s1 = 0; s2 = 0.8728; c0 = 0.0031; c1 = 0; c2 = - 0.2086; 

s3 = 0; s4 = 1.7485 c3 = 0; c4 = 2.1030 

Table 10. Löwdin-Hermite Symmetric and Canonical Coefficients 

Löwdin-Hermite Löwdin-Hermite 

Symmetric Orthogonalization Canonical Orthogonalization 

N = 2: N = 2: 

s0 = 0.7207; s1 = 0; s2 = - 0.0747 c0 = 0.6981; c1 = 0; c2 = 0.0980 

s0 = 0; s1 = 0.5311; s2 = 0 c0 = 0; c1 = 0.5311; c2 = 0 

s0 = 0.2112; s1 = 0; s2 = 0.2549 c0 =  0.2773; c1 = 0; c2 = 0.2468 

N = 3: N = 3: 

s0 = 0.7207; s1 = 0;  

s2 = -0.0747; s3 = 0 

c0 = 0; c1 = 0.4493;  

c2 = 0; c3 = 0.0579 

s0 = 0; s1 = 0.4404;  

s2 = 0; s3 = - 0.0606 

c0 =  0.6981; c1 = 0;  

c2 = - 0.098; c3 = 0 

s0 = 0:2112; s1 = 0;  

s2 = 0:2549; s3 = 0 

c0 = 0:2773c1 = 0;  

c2 = - 0:2468; c3 = 0 

s0 = 0; s1 = 0:2970;  

s2 = 0; s3 = 0:0899 

c0 = 0; c1 = 0:2834;  

c2 = 0; c3 = - 0:0917 

N = 4: N = 4: 

s0 = 0:7136; s1 = 0;  

s2 =  -0:0799; 

c0 = 0:2773; c1 = 0;  

c2 = 0:2191; 

s3 = 0; s4 = 0:0032 c3 = 0; c4 = 0:0166 

s0 = 0; s1 = 0:4404; s2 = 0; c0 = 0; c1 = - 0:8985; c2 = 0; 

s3 = - 0:0606; s4 = 0 c3 = - 0:0579; c4 = 0 

s0 = 1:5595; s1 = 0; s2 = 0:8459; c0 = - 0:6932; c1 = 0; c2 = - 0:0727; 

s3 = 0; s4 = - 0:0284 c3 = 0; c4 = - 0:0104 

s0 = 0; s1 = 0:2970; s2 = 0; c0 = 0; c1 = 0:2834; c2 = 0; 

s3 = 0:0899; s4 = 0 c3 = - 0:0917; c4 = 0 

s0 = 0:1295; s1 = 0; s2 = 0:1924; c0 = - 0:0791; c1 = 0; c2 = 0:1322; 

s3 = 0; s4 = 0:0255 c3 = 0; c4 = 2:1030 

Table 11. Löwdin-Laguerre Symmetric and Canonical Coefficients 

Löwdin-Laguerre Löwdin-Laguree 

Symmetric Orthogonalization Canonical Orthogonalization 

N = 2: N = 2: 

s0 = 0:8685; s1 = 0:4587;  

s2 = 0:0939 

c0 = 0:1995; c1 = -0:8096;  

c2 = 0:1902 

s0 = 0:4185; s1 = - 0:4700;  

s2 = -0:3916 

c0 = - 0:8692; c1 = - 0:2919;  

c2 = 0:1995 

s0 = 0:2784; s1 = - 0:7651;  

s2 = 0:2903 

c0 = 0:2140; c1 = 0:5071;  

c2 = 0:4171 

N = 3: N = 3: 

s0 = 0:8652; s1 = 0:4617; c0 = 0:2309; c1 = - 0:6772; 

s2 = 0:1077; s3 = 0:0143 c2 = 0:3319; c3 = - 0:0362 

s0 = 0:3933; s1 = -0:3298; c0 =  0:7961; c1 = 0:5785; 

s2 = - 0:3097; s3 = 0:0990 c2 = 0:2542; c3 = - 0:0685 

s0 = 0:2921; s1 = -0:5807; c0 = 0:7336; c1 = 0:5363; 

s2 = - 0:1032; s3 = 0:1219 c2 = 0:0825; c3 = - 0:0639 

s0 = 0:1643; s1 = - 0:5816; c0 = - 0:0896; c1 = - 0:2872; 

s2 = 0:3632; s3 = - 0:0539 c2 = - 0:2611; c3 = - 0:1330 

We have calculated the Löwdin's symmetric and 

canonical coefficients for the case of all the newly generated 

orthogonal polynomials using equation (10) of [7].They are 

listed in Tables 9 to 11. 

6. Unified View 

A Unified view of all the polynomials obtained using the 

three orthogonalization methods viz., the Gram-Schmidt, 

symmetric and canonical are presented in a unique graph as 

shown in Figures 1 to 7. This unification helps to visualize 

the three kinds of orthogonal polynomials at a time. We have 

used different symbols for different kind of polynomials. In 

this unified graphical representation, except Bessel and 

Laguerre orthogonal polynomials, big differences are there 
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in other polynomials. The classical orthogonal polynomials 

obtained through Gram-Schmidt method are represented by 

solid lines (-), the Löwdin symmetric orthogonal 

polynomials are represented by dashed lines (--) and the 

Löwdin canonical orthogonal polynomials are represented 

by dotted lines (:::). A particular colour represent one kind of 

polynomial in each of the three polynomials. The different 

colours; magenta, green, red and blue represent the 0
th

; 1
st
; 

2
nd

 and 3
rd

 polynomials respectively. 

 

Figure 1. Unified view of Legendre and Löwdin-Legendre Polynomials 

 

Figure 2. Unified view of Hermite and Löwdin-Hermite Polynomials 

 

Figure 3. Unified view of Laguerre and Löwdin-Laguerre Polynomials 

 

Figure 4. Unified view of Chebyshev I and Löwdin-Chebyshev I 

Polynomials 

 

Figure 5. Unified view of Chebyshev II and Löwdin-Chebyshev II 

Polynomials 

 

Figure 6. Unified view of Bessel and Löwdin-Bessel Polynomials 
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with a Unified View 

 

Figure 7. Unified view of Jacobi and Löwdin-Jacobi Polynomials 

7. Conclusions 

In sum, the general concept of orthogonal polynomials 

have been introduced describing many new classes of 

orthogonal polynomials. Two new sets of orthogonal 

polynomials can be easily obtained by applying the concept 

of Löwdin orthogonalization methods. The zeros and 

asymptotic limits of the Löwdin orthogonal polynomials are 

calculated. Quite understandably, the biggest difference 

arises in the Löwdin-Bessel and Löwdin-Laguerre 

polynomials when compared with their standard orthogonal 

polynomials. There are some shortcomings in finding the 

eigenvalues and eigenvectors of the Hermitian metric matrix 

2  for higher values of� . An unfavorable feature of the 

Gram matrix 2 is that it begins to develop negative 

eigenvalues beyond a certain order � of the monomials. 

Löwdin polynomials obtained through symmetric and 

canonical orthogonalization procedures are compared with 

the classical polynomials obtained through Gram-Schmidt 

orthogonalization procedure for � = 2; 3 and 4 (i.e. 3; 4 and 

5 monomials). All the polynomials are normalized to unity. 

It is observed that alternate polynomials in a set repeat in the 

subsequent set. 

All the newly obtained polynomials are plotted and are 

compared with the standard orthogonal polynomials 

obtained through the Gram-Schmidt orthogonalization 

procedure. 

This theoretical framework offers the possibility to search 

for new iterative approaches where desired properties can be 

immediately obtained from the theoretical investigations. 

Moreover, a classification of the qualitative behaviour of 

these polynomials with a different view point has been 

introduced. The Löwdin orthogonalization concepts and 

these new classes of orthogonal polynomials could be the 

basis to develop new methods and new polynomials. From 

these results, research for efficient and robust techniques 

could be stimulated. With the new classes of orthogonal 

polynomials, the subject of orthogonal polynomials will 

witness the possible openings of several new avenues of 

research. They may open problems in numerical analysis, 

solutions of non-linear differential equations, least-square 

curve fitting etc. 
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