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Abstract: Integral representations are derived from a differential-type boundary value problem using a fundamental 

solution. A set of integral representations is equivalent to a set of differential equations. If the boundary conditions are 

substituted into the integral representations, the integral equations are obtained, and the unknown variables are determined by 

solving the integral equations. In other words, an integral-type boundary value problem is derived from the integral 

representations. An effective and flexible finite element algorithm is easily obtained from the integral-type boundary value 

problem. In the present paper, integral representations are obtained for the diffusion of a material or heat in the sea, where the 

convective velocity and diffusion constant change in space and time. A new numerical solution of an advection-diffusion 

equation is proposed based integral representations using the fundamental solution of the primary space-differential operator, 

and the numerical results are shown. An innovative generalization of the integral representation method: generalized integral 

representation method is also proposed. The numerical examples are given to verify the theory. 

Keywords: Advection-Diffusion Problem, Variable Diffusion Constant, Integral Representation Method,  

Primary Space-Differential Operator, Generalized Fundamental Solution,  

Generalized Integral Representation Method Component 

 

1. Introduction

Generally speaking, physical phenomena are described as 

boundary value problems in differential equations. We refer 

to this type of problem as a differential-type boundary value 

problem. If we use a fundamental solution of the differential 

equations, we can derive integral representations from the 

differential-type boundary value problem. If we substitute 

the boundary conditions into the integral representations, we 

obtain the integral equations. We can determine the 

unknown variables by solving the integral equations. The 

integral representations are equivalent to the 

differential-type boundary value problem. Hence, we refer 

to the boundary value problem expressed by the integral 

representations as the integral-type boundary value problem. 

If the diffusion coefficient is constant, a solution obtained 

by the boundary element method (BEM) is well known [1]. 

In the present paper, we discuss a solution obtained by the 

integral representation method (IRM) where the diffusion 

constant is not actually constant. In this case, a solution can 

be obtained using the finite element method (FEM) or the 

BEM with iteration (BEMI). 

For the ordinary FEM algorithm of a boundary value 

problem, we must divide the computational region into 

elements and interpolate unknown functions. In the FEM, 

we use simple interpolation functions in the elements. This 

may reduce the degrees of freedom of the interpolation 

functions, and we overcome this difficulty by increasing the 

number of elements. As such, we face a serious problem in 

the mesh division. Although mesh-free methods [2~7] can 

be used to solve this problem, we encounter some 

difficulties in constructing the equilibrium equations of 

nodes and/or the stability of the calculation results. A 

collocation method such as that described in Reference [8] 

brings about difficulties in the construction of the 

interpolation function. On the other hand, the IRM can 
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realize an easier division into elements and a higher 

precision interpolation. In the IRM, since the continuity of 

unknown variables between the elements is not required 

explicitly, a mesh-free approach would be possible in the 

case of a constant distribution of unknown variables in 

elements. If we introduce, for example, the moving least 

squares (MLS) method into the IRM, a mesh-free method 

would be feasible. 

In the present paper, we propose a new numerical method 

for solving the diffusion equation: 

(1) The proposed method is a unique numerical method 

hinted from integral representations of 

Navier-Stokes equation obtained by Uhlman [9]. 

(2) We can derive integral representations that do not 

include the differentiations of unknown variables 

with respect to spatial variables. We can easily 

introduce an irregular element division of the region. 

The present method would be favorable when the 

fluid region is geometrically complex and/or when 

the boundary changes in time and the element 

division inevitably becomes irregular. 

(3) Since we need to consider only the fluid region in 

which the material or heat exists, the required 

calculation time and computer memory may be 

reduced. 

We conduct numerical calculations of 1D and 2D 

problems and demonstrate the effectiveness of the IRM. 

Stable and precise results are obtained in a short time. 

Furthermore, we developed a generalized integral 

representation method (GIRM). The integral representation 

based on the primary space-differentiation operator 

discussed above is one of the generalized integral 

representations (GIR). The primary space-differentiation 

operator is closely related to the differential operator of the 

boundary value-problem. On the other hand, in the 

generalized theory, the fundamental function is chosen first, 

and a differential equation is defined properly reflecting the 

fundamental solution and the boundary value problem. For 

example, we can use the Gaussian function as the 

generalized fundamental solution. 

2. Advection-Diffusion Equation in 

One-Dimension (1D) 

The spatial coordinate and time are denoted by x  and t , 

respectively. Let ),( txC , ),( txu , ),( txκ  and ),( txσ  be 

the material density or temperature, advective velocity, 

diffusion coefficient and material source, respectively. The 

1D diffusion equation in region Lx <<0  is then written as 

2
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If ),( txC  at an internal point (IP) is known and ),( txC  

or xtxC ∂∂ ),(  at a boundary point (BP) is given at time t  

from the boundary conditions (BC), then differential 
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We define the space fundamental solution ),( ξxG  of (2) 
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From (2), we have 
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Hence, we obtain 
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Transforming the integral of the first term on the 

right-hand side of (8) and exchanging x  and ξ , we obtain 
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If we remove the spatial derivatives of C  in the integrals 

in (10), we obtain 
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If ),( txC  at IP is known and ),( txC  or xtxC ∂∂ ),(  at 

BP is known from the boundary conditions, then the integral 

representations are integral equations with ttxC ∂∂ ),(  the 

unknown variables at IP and xtxC ∂∂ ),(  or ),( txC  the 

unknown variables at BP. We obtain ),( dttxC +  at IP from 

ttxCdttxCdttxC ∂∂+=+ ),(),(),( . If )0,(xC  on IP is known 

from the initial conditions, then we can solve the initial and 

boundary value problem using the integral representations. 

When the diffusion coefficient ),( txκ  and the advective 

velocity ),( txu  are given simply by 

consttx == κκ ),( ,               (12a) 

constUtxu ==),( ,               (12b) 

and (5) and (6) are substituted into (11), we obtain 
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3. Numerical Applications to 

One-Dimensional (1D) Problems 

For simplicity, we assume the conditions in (12) and 

0=σ . First, we transform the integral representation, (13), 

into algebraic equations. We divide the region Lx ≤≤0  

into N  equal elements of length dx  and denote the 

midpoint of each element as 
ix , 1,,1,0 −= Ni ⋯  as 

follows: 

N

L
dx =                      (14) 
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Equation (13) is approximated by 
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We define 
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Then we obtain the algebraic equations for IP (
ix , 

1,,1,0 −= Ni ⋯ ) and BP ( LxBP ,0= ), respectively, as 
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There are two types of solution of these algebraic 

equations, (18): explicit and implicit solutions. 

Explicit solution A1 

In the integral representation, (18), ttxC ∂∂ ),(  is used as 

the main unknown variable. 
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(1) Assume ),( txC  known. 

(2) Obtain ttxC ∂∂ ),(  using (18). 

(3) Obtain ),( dttxC +  from dtttxCtxCdttxC )),((),(),( ∂∂+=+ . 

(4) Repeat the process. 

Implicit solution A2 

In the integral representation, (18), ),( txC  is used as the 

main unknown variable. 

(1) Assume ),( dttxC −  known. 

(2) Approximate ttxC ∂∂ ),(  in (18) by 

dtdttxCtxCttxC )],(),([),( −−=∂∂  and solve for the 

unknown variable ),( txC . 

(3) Repeat the process. 

If we use implicit solution, the stability of the numerical 

calculation increases much, and we can use much larger 

dt  than the one used in the explicit method. The 

non-homogeneous term of the integral equation must be 

evaluated at dtt 5.0− . 

In the case of explicit solution A1, we use the following 

algebraic equations and progression of time equation: 
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The total number of the unknowns in the algebraic 

equations is 2+N : where ttxC
j

∂∂ ),(  for 1,,1,0 −= Nj ⋯ , 

and ),0( tC  or xtC ∂∂ ),0(  and ),( tLC  or xtLC ∂∂ ),( . The 

total number of equations is also 2+N  in total: N  

equations for IP and 2  equations for BP. 

In this case, all variables on IP and BP become unknowns. 

Namely, we are facing a region-boundary element problem. 

As an approximation, we use 

dxtCtxCytC )],0(),([2),0( 0 −≈∂∂ , if ),0( tC  is known. 

Otherwise, we use 2]),0([),(),0( 0 dxxtCtxCtC ⋅∂∂−≈ , if 

xtC ∂∂ ),0(  is known. We use similar approximations for 

Lx = . In this case, the number of unknowns and the 

number of equations are both N. 

In solution A2, we can obtain the similar algebraic 

equations as in solution A1. 

3.1. Diffusion of Material in Infinite Space without 

Advection 

We consider an initial value problem without advection in 

the region ∞<<−∞ x  ( LxL <<−  in computation) with 

the initial condition )()0,( xxC δ= . As a result of the 

symmetry, we consider the region given by ∞<≤ x0  

( Lx <<0  in computation). We summarize the conditions as 

follows: 
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The solution of this problem is the well-known 

fundamental solution of the linear 1D diffusion problem: 
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Numerical results are shown in Figs. 1 and 2. We used 

procedure A1 for the numerical calculation. The calculation 

conditions are 1=L , 20=N , 0005.0=dt  and 089.0=ν . 

The precision of the calculation is very high. 

 

Figure 1. Calculated results at each time step. 
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Figure 2. Comparison with the exact solution ( 5.0=t ). 

3.2. Diffusion of Material in Infinite Space with Advection 

In the calculations in Section 3.1, we considered in the 

region given by ∞<≤ x0  ( Lx <≤0  in computation) using 

symmetry. However, since this problem is asymmetric, we 

must consider in the region given by ∞<<−∞ x  

( LxL <≤−  in computation). When LxL <≤−  is large 

enough, we can assume 
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If we adopt the explicit solution A1, we have from (19) 
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Figure 3. Space distribution of C  in case of doublet type initial 

distribution of material: (a) approximate solution; (b) exact solution.(48) 

Numerical results are shown in Fig. 3. We used A1 

procedure for the numerical calculation. The calculation 

conditions are 4=L , 160=N , 0005.0=dt , 089.0=κ  and 

0.1=U . The precision of the calculation is high. 

4. Advection-Diffusion Equation in 

Two-Dimension (2D) 

The spatial coordinate and time are denoted as ),( yx  and 

t , respectively. Let ),,( tyxC , jiu ),,(),,(),,( tyxvtyxutyx += , 

),,( tyxκ , and ),,( tyxσ  be the material density or 

temperature, the advective velocity vector, the diffusion 

coefficient, and the material source, respectively. The 2D 

diffusion equation in region S  is then written as 

2( ) ( )

in

C
C C C C

t

S

κ σ κ κ σ∂ + ⋅∇ = ∇ ⋅ ∇ + = ∇ + ∇ ⋅∇ +
∂

u
  (34) 

Rewriting (34), we have 








 −∇⋅∇−∇⋅+
∂
∂=∇ σκ

κ
CC

t

C
C )(

12 u .       (35) 

The fundamental solution of Laplace operator, the 

primary space-differential operator in this case, is defined as 
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),(),(
2

ξxξx δ=∇ G ,              (36) 

and is given by 

rG ln
2

1
),(

π
=ξx ,               (37) 

where )()(),( ηδξδδ −−= yxξx  and 22 )()(|| ηξ −+−=−= yxr ξx . 

The fundamental solution ),( ξxG  satisfies 
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GG .    (38) 

An extension to 3D may be straight forward. Let r  in 3D 

be 222 )()()(|| ζηξ −+−+−=−= zyxr ξx  and the 

fundamental solution be 

r
G

π4

1
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33 ||
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And we replace area and line integrals by volume and area 

integrals, respectively. 

From (35) and (36), we have 
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Hence, we obtain 
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where 



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
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and C  is the boundary of S . 

We transform the integral of the first term on the 

right-hand side of (41). Using the vector formula: 
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  (44) 

where n  is the unit outward normal on C . Exchanging x  

and ξ , we have 
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Removing the spatial derivatives of ),( tC x  in the area 

integrals in (45), we have 
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 (46) 

This equation does not include the spatial derivative of the 

unknown variable ),( tC x  in the area integrals. 

If ),( tC x  at IP and ),( tC x  or ntC ∂∂ ),(x  at BP are 

known from the boundary conditions, the integral 

representations are integral equations having unknown 

variables ttC ∂∂ ),(x  at IP and ntC ∂∂ ),(x  or ),( tC x  at BP. 

We obtain ),( dttC +x  at IP from 

ttCdttCdttC ∂∂+=+ ),(),(),( xxx . Specifically, if )0,(xC  at 

IP is known from the initial conditions, we can solve the 

initial and boundary value problems using the integral 

representations. 

When the diffusion coefficient ),( txκ  and the advective 

velocity jxixxu ),(),(),( tvtut +=  are given simply by 

constt == κκ ),(x ,               (47a) 

constUt == ixu ),( ,              (47b) 

and (37) and (38) are substituted into (46) , we obtain 
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 (48) 

If we consider the steady state, (48) with 0=U  is the 
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integral representation of the Poisson equation. Substituting 

the boundary condition into (48) and considering on the 

boundary C , we obtain the integral equation used in the 

BEM. 

5. Numerical Applications to 

Two-Dimensional (2D) Problems 

5.1. Diffusion of Material in Infinite Space without 

Advection 

For simplicity, we assume the conditions given in (47) and 

0=σ . We consider the diffusion of a material placed 

initially at the center of the coordinates in an infinite region. 

In other words, the initial condition ),()0,,( yxyxC δ=  is 

specified in the region ∞<<−∞ x  and ∞<<−∞ y . Using 

symmetry, we consider only the quarter region given by 

Lx ≤≤0 , By ≤≤0 . 

Assuming 0),( =txσ  and 0=U , in this case, we have 

( )

2 20

2 20
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     (49) 

where C  and nC ∂∂  are assumed to be zero on the 

boundaries Lx =  and By = . 

For simplicity, we divide the region Lx ≤≤0 , By ≤≤0  

into NM ×  equal elements with sides dx  and dy  and 

denote the center of each element as ),(
ji

yx , 

1,,1,0 −= Mi ⋯ , 1,,1,0 −= Nj ⋯ . In other words, we have 

,
L B

dx dy
M N

= =                     (50) 
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x
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2

, 1,,1,0 −= Mi ⋯ ,          (51a) 

         dyj
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y
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2

, 1,,1,0 −= Nj ⋯ .         (51b) 

We summarize the initial and boundary conditions as 

follows: 

Initial condition: 

        
00

4

1
)0,,(

jiji
dxdy

yxC δδ= , 

           1,,1,0 −= Mi ⋯ , 1,,1,0 −= Nj ⋯ .      (52) 

Boundary conditions: 
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Equation (49) is then approximated by the following 

algebraic equation: 
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   (54) 

As discussed in Section 3, there are two types of solution: 

the explicit and implicit solutions. We use the explicit 

solutions below and consider the two following solutions: 

Solution A1.a. Only ttyxC
ji

∂∂ ),,(  at IP is unknown 

We approximate the boundary value ),0,( txC m
 and 

),,0( tyC n
 as follows: 

),,(),0,( 0 tyxCtxC mm ≈ , ),,(),,0( 0 tyxCtyC nn ≈ ,    (55) 

and the algebraic equation is approximated for 

1,,1,0 −= Mi ⋯ , 1,,1,0 −= Nj ⋯  as 
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  (56) 

The unknowns of this algebraic equation are tC ∂∂  at IP, 

and the number of the unknowns is NM × . The number of 

equations is also NM × . Hence, we can solve this equation. 

However, the precision is not high because of the 

approximation in (55). 

Solution A1.b. Both ttyxC
ji

∂∂ ),,(  at IP, and ),0,( txC i
 

and ),,0( tyC
j

 at BP are unknown 

For the internal point ),(
ji

yx , 1,,1,0 −= Mi ⋯ , 

1,,1,0 −= Nj ⋯ , we have 
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 (57a) 

for the boundary point on the x-axis )0,( ix , 

1,,1,0 −= Mi ⋯ , 
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and for the boundary point on the y-axis ),0(
j

y , 

1,,1,0 −= Nj ⋯  
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  (57c) 

The number of unknowns and the number of equations are 

both NMNM ++× . Thus, we can solve the equation. 

The exact solution of this problem is given by 

t
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e
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4

22

4

1
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The numerical results are shown in Fig. 4. The conditions 

of the calculations are 1== BL , 20== NM , 0005.0=dt , 

5.0=t , and 089.0=κ . The results indicate that Solution 

A.1b is more precise than Solution A1.a. 

 

Figure 4. Numerical results at 025.0=y  ( 5.0=t ); (a) Solution A1.a; 

(b) Solution A1.b. 

5.2. Diffusion of Material in Infinite Space with Advection 

For simplicity, we assume the conditions given in (47) and 

0=σ . We assume that the advection velocity U  is not zero. 

In the calculations in Section 5.1, we considered in the 

region given by ∞<≤ x0 , ∞<≤ y0  ( Lx <≤0 , By <≤0  

in computation) using symmetry. However, since this 

problem is asymmetric, we must consider in the region given 

by ∞<<−∞ x , ∞<≤−∞ y  ( LxL <≤− , ByB <≤−  in 

computation). Namely, the size and center of elements are 

given by 

2 2
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            1,,1,0 −= Mi ⋯ , 1,,1,0 −= Nj ⋯ .    (60) 

The initial and boundary conditions are as follows. 

Initial condition:  
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           1,,1,0 −= Mi ⋯ , 1,,1,0 −= Nj ⋯ .     (61) 

Boundary condition:  
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C  and nC ∂∂  are assumed to be zero on the boundaries 

Lx ±=  and By ±= . 

We have from (48) 
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The exact solution of this problem is given by 

2 2
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4
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We use the explicit Solution A1. The numerical results are 

shown in Figs. 5 and 6. The conditions of the calculations 

are 2== BL , 41== NM , 0005.0=dt , 089.0=κ , and 

0.1=U . According to the results, the accuracy of the 

numerical results is high. The numerical result at 25.1=t  is 

affected by the boundary. 

 

Figure 5. Space distribution of C  in case of source type initial value 

( 0=y ): (a) approximate solution; (b) exact solution. 
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Figure 6. Space distribution of C  obtained by approximate and exact 

solutions: (a) appr., 75.0=t ; (b) appr., 25.1=t ; (c) exact, 75.0=t ; 

(d) exact, 25.1=t . 

6. Generalization to Generalized 

Integral Representation Method 

(GIRM) 

6.1. Generalized Integral Representation Method (GIRM) 

in 1D 

We introduce a generalized space fundamental solution 
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~ ξxG  defined as 
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where ),(
~ ξδ x  is derived from ),(

~ ξxG  when ),(
~ ξxG  is 

specified. If we use the Gaussian function: 
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Furthermore, when ),(
~ ξxG  is defined as (66), and γ  

tends to zero, then ),(
~ ξxG  and ),(

~ ξδ x  satisfy 

),(),(
~ ξδξ xxG → ,                   (69) 
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where )(),( ξδξδ −= xx  is the Dirac delta function: 

( , ) 0 and ( , ) 1x for x x dxδ ξ ξ δ ξ
∞

−∞
= ≠ =∫      (71) 

Assuming (66), ),(
~ ξxG  is not singular at ξ=x  and 

decreases rapidly as || ξ−x  increases. These properties are 

useful in the numerical calculations. We can increase the 

accuracy of the numerical integration and reduce the 

computation time. 

From (1) and (65), we have 
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Rewriting (72), we have 
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(73) 

Transforming the integral of the first and third terms on 

the right-hand side of (73) and exchanging x  and ξ , we 

derive the generalized integral representation: 
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This equation does not include the spatial derivative of the 

unknown variable C  in the integrals. 

When γ  tends to zero, then (69) and (70) make the 

generalized integral representation, (74), tends to the 

differential equation, (1), at IP. 
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If ),( txC  at IP and ),( txC  or xtxC ∂∂ ),(  at BP are 

known from the boundary conditions, then the generalized 

integral representations are integral equations with 

ttxC ∂∂ ),(  the unknown variables at IP and xtxC ∂∂ ),(  or 

),( txC  the unknown variables at BP. We obtain ),( dttxC +  

at IP from ttxCdttxCdttxC ∂∂+=+ ),(),(),( . If )0,(xC  on 

IP is known from the initial conditions, then we can solve the 

initial and boundary value problem using the generalized 

integral representations. The generalized integral 

representations are equivalent to the differential equations. 

When the diffusion coefficient ),( txκ  and the advective 

velocity ),( txu  are given simply by 

consttx == κκ ),( ,                (75a) 

constUtxu ==),( ,                (75b) 

if we assume (66), (68) and (74) are given by 
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6.2. Diffusion of Material in 1D Infinite Space with 

Advection 

We discussed the same problem in Section 3.2. For 

simplicity, we assume (75) and 0=σ . We assume the 

triangular initial distribution of a material, and the same 

computation region given by LxL <<−  is used. If we 

assume 1>>L  and 
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the generalized integral representation is, from (77), given 

by 
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The initial value is specified as 
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Numerical results are shown in Fig. 7. We used procedure 

A1 for the numerical calculation. The calculation conditions 

are 4=L , 320,160,80=N , 00025.0,0005.0,001.0=dt , 

01.0=κ , 0.2=U , and 04.0,08.0,16.0=γ . In the 

calculations, N or dx  was chosen assuming a proper value 

of the local Peclet number κUdx , and then dt  and γ  

were determined keeping the local Courant number 

dxUdt and the steepness of the Gaussian function γdx  

constant: 02.0  and 625.0 , respectively. If N  was 

increased, then the computational noise was eliminated, and 

the precise results were obtained. 

 

Figiure 7. Space distribution of C  in case of triangular initial 

distribution of a material: (a) approximate solution ( 80=N ); (b) 

approximate solution ( 160=N ); (c) approximate solution ( 320=N ); 

(d) exact solution. 

6.3. Generalized Integral Representation Method (GIRM) 

in 2D 

In the case of 2D, the diffusion equation is given by (34), 

and we replace (65) by 

( ) ),,(
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)),((),(
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),( tGtGt ξxξxxuξxx δκ =∇⋅+∇⋅∇ .   (81) 

The extension of the theory to 3D is straightforward. We 

can use the Gaussian function as a generalized space 

fundamental solution ),(
~

ξxG : 
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where 22 )()(|| ηξ −+−=−= yxr ξx . Then, we have 
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When ),(
~ ξxG  is defined as (82), and γ  tends to zero, 

then ),(
~

ξxG  satisfies 

),(),(
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ξxξx δ→G ,                   (85) 

where ),( ξxδ  is the Dirac delta function in 2D: 

)()(),( ηδξδδ −−= yxξx .           (86) 

From (34) and (81), we have 
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From (87), we derive the generalized integral 

representation: 
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This equation does not include the spatial derivative of the 

unknown variable C  in the integrals on S . 

When γ  tends to zero, then the generalized integral 

representation, (88), tends to the differential equation given 

by (34) at IP. 

6.4. Diffusion of Material in 2D Infinite Space with 

Advection 

We discussed a similar problem in Section 5.2. The 

computation region is given by ∞<<−∞ x , ∞<≤−∞ y  

( LxL <≤− , ByB <≤−  in computation). For simplicity, we 

assume (47) and 0=σ . The generalized integral 

representation is, from (88), given by 

∫∫∫∫ ∂
∂=

SS
dS

t

tC
GdSttC

ξξ

ξ
xξxξξ

),(
),(

~
),,(

~
),( δ .    (89) 

The initial value is specified as 
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Numerical results are shown in Fig. 8. We used the 

explicit procedure A1 for the numerical calculation. The 

calculation conditions are 4== BL , 41== NM ,  

00025.0=dt , 01.0=κ , 0.1=U , and 16.0=γ . The accuracy 

of the numerical results is high. 

 

Figure 8. Space distribution of C  in case of Gaussian type initial value 

( 0=y ): (a) approximate solution; (b) exact solution. 

7. Conclusions 

An integral representation is obtained using a 

fundamental solution of a differential-type boundary value 

problem. If the boundary conditions are substituted into the 

integral representation, an integral equation is obtained. In 

the 1D-problems, the diffusion of a material initially 

concentrated at the center of the space with and without the 

advection was discussed. The 1D-examples revealed the 

basic aspects of the integral representation method. Similar 

problems were also discussed in 2D. As shown in Figs. 1 

through 6, the agreement of the numerical results with the 

analytical ones was satisfactory. The diffusion and the 

advection are properly calculated in the examples. 

Furthermore, we proposed a generalized integral 

representation method. The integral representation based on 

the primary space-differentiation operator is one of the 

generalized integral representations. In the generalized 

theory, the fundamental function is chosen first, and the 

differential equation is defined properly reflecting the 

fundamental solution and the boundary value problem. In 

the numerical examples, we used the Gaussian function as 

the generalized fundamental solution. The stability and the 

precision of the computation were satisfactory as shown in 

Figs. 7 and 8. Assuming the Gaussian function as the 

generalized fundamental solution, we can not only eliminate 

the singularity but also localize the effect of a point on other 

points in its neighborhood. These properties are useful in the 

numerical calculations. 

 

References 

[1] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, 4.3 Coupled 
boundary element - Finite difference methods, Boundary 
Element Techniques, Theory and Applications in 
Engineering, Springer-Verlag (1984). 

[2] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite 
element method: Diffuse approximation and diffuse elements, 
Comput. Mechanics 10 (1992) 307-318. 



26 Hiroshi Isshiki et al.:  Solution of a Diffusion Problem in a Non-Homogeneous Flow and Diffusion Field by  

the Integral Representation Method (IRM) 

[3] T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galarkin 
methods, International Journal for Numerical Methods in 
Engineering 37 (1994) 229-256. 

[4] G. Yagawa, Y. Yamda, Free mesh method: A new meshless 
finite element method, Computational Mechanics 18 (1996) 
383-386. 

[5] L.B. Lucy, A numerical approach to the testing of the fission 
hypotheis, The Astronomical Jounal 82 (12) (1977) 
1013-1024. 

[6] G.R. Liu, M.B. Liu, Smoothed Particle Hydrodyndmics–a 

meshfree particle method. World Scientific; ISBN 
981-238-456-1 (2003). 

[7] H. Isshiki, Discrete differential operators on irregular nodes 
(DDIN), International Journal for Numerical Methods in 
Engineering 88 (12) (2011) 1323-1343. 

[8] H. Isshiki, Random Collocation Method (RCM), 
IMECE2010-39054, Vancouver, Canada (2010). 

[9] J.S. Uhlman, An integral equation formulation of the 
equations of motion of an incompressible fluid, NUWC-NPT 
Technical Report 10,086 15 July (1992). 

 


