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Abstract: Integral representations are derived from a differential-type boundary value problem using a fundamental
solution. A set of integral representations is equivalent to a set of differential equations. If the boundary conditions are
substituted into the integral representations, the integral equations are obtained, and the unknown variables are determined by
solving the integral equations. In other words, an integral-type boundary value problem is derived from the integral
representations. An effective and flexible finite element algorithm is easily obtained from the integral-type boundary value
problem. In the present paper, integral representations are obtained for the diffusion of a material or heat in the sea, where the
convective velocity and diffusion constant change in space and time. A new numerical solution of an advection-diffusion
equation is proposed based integral representations using the fundamental solution of the primary space-differential operator,
and the numerical results are shown. An innovative generalization of the integral representation method: generalized integral

representation method is also proposed. The numerical examples are given to verify the theory.

Keywords: Advection-Diffusion Problem, Variable Diffusion Constant, Integral Representation Method,
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1. Introduction

Generally speaking, physical phenomena are described as
boundary value problems in differential equations. We refer
to this type of problem as a differential-type boundary value
problem. If we use a fundamental solution of the differential
equations, we can derive integral representations from the
differential-type boundary value problem. If we substitute
the boundary conditions into the integral representations, we
obtain the integral equations. We can determine the
unknown variables by solving the integral equations. The
integral  representations are  equivalent to  the
differential-type boundary value problem. Hence, we refer
to the boundary value problem expressed by the integral
representations as the integral-type boundary value problem.

If the diffusion coefficient is constant, a solution obtained
by the boundary element method (BEM) is well known [1].
In the present paper, we discuss a solution obtained by the
integral representation method (IRM) where the diffusion

constant is not actually constant. In this case, a solution can
be obtained using the finite element method (FEM) or the
BEM with iteration (BEMI).

For the ordinary FEM algorithm of a boundary value
problem, we must divide the computational region into
elements and interpolate unknown functions. In the FEM,
we use simple interpolation functions in the elements. This
may reduce the degrees of freedom of the interpolation
functions, and we overcome this difficulty by increasing the
number of elements. As such, we face a serious problem in
the mesh division. Although mesh-free methods [2~7] can
be used to solve this problem, we encounter some
difficulties in constructing the equilibrium equations of
nodes and/or the stability of the calculation results. A
collocation method such as that described in Reference [8]
brings about difficulties in the construction of the
interpolation function. On the other hand, the IRM can
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realize an easier division into elements and a higher
precision interpolation. In the IRM, since the continuity of
unknown variables between the elements is not required
explicitly, a mesh-free approach would be possible in the
case of a constant distribution of unknown variables in
elements. If we introduce, for example, the moving least
squares (MLS) method into the IRM, a mesh-free method
would be feasible.

In the present paper, we propose a new numerical method
for solving the diffusion equation:

(1) The proposed method is a unique numerical method
hinted from  integral  representations  of
Navier-Stokes equation obtained by Uhlman [9].

(2) We can derive integral representations that do not
include the differentiations of unknown variables
with respect to spatial variables. We can easily
introduce an irregular element division of the region.
The present method would be favorable when the
fluid region is geometrically complex and/or when
the boundary changes in time and the element
division inevitably becomes irregular.

(3) Since we need to consider only the fluid region in
which the material or heat exists, the required
calculation time and computer memory may be
reduced.

We conduct numerical calculations of 1D and 2D
problems and demonstrate the effectiveness of the IRM.
Stable and precise results are obtained in a short time.

Furthermore, we developed a generalized integral
representation method (GIRM). The integral representation
based on the primary space-differentiation operator
discussed above is one of the generalized integral
representations (GIR). The primary space-differentiation
operator is closely related to the differential operator of the
boundary value-problem. On the other hand, in the
generalized theory, the fundamental function is chosen first,
and a differential equation is defined properly reflecting the
fundamental solution and the boundary value problem. For
example, we can use the Gaussian function as the
generalized fundamental solution.

2. Advection-Diffusion Equation in
One-Dimension (1D)

The spatial coordinate and time are denoted by x and ¢,
respectively. Let C(x,t), u(x,t), «(x,t) and o(x,t) be
the material density or temperature, advective velocity,
diffusion coefficient and material source, respectively. The
1D diffusion equation in region 0<x <L is then written as
0°c , koC
dox®  Ox Ox (1)

oC oC _ 0 aC

+u K— |+0 =K

o ax  ox 0x
in0<x<L

If C(x,t) at an internal point (IP) is known and C(x,?)
or dC(x,t)/dx at a boundary point (BP) is given at time ¢

from the boundary conditions (BC), then differential

equation, (1), yields 0C(x,¢)/dt at IP. C(x,t+dr) at IP is
then obtained by C(x,t+dt) = C(x,t) +dtdC(x,t)/dt . Hence,
if C(x,0) is given by the initial condition, we can solve the

initial-boundary value problem.
Rewriting (1), we have

a’c 6C 6C _ 0k 0C
LG nuse e ) @)
Ox ot ax Ox Ox
We define the space fundamental solution G(x,&) of (2)

as

0°G(x,§)

o owd) 3)

where J(x,&) is Dirac’s delta function d(x—¢):
d(x)=0 for x#20 and J'm O(x)dx =1 )

We refer to the operator 9°/0x* as the primary

space-differential operator. Then, we have
G(xf)——\x <l 5)

The fundamental solution G(x,¢) satisfies

0G(x,¢) _ _0G(x,4) _
Ox o0& 2

Lsen(x-8), (6)

From (2), we have

0= I{G( 5{6 C(x,1)

1 (OC(xt)_'_( 0
K(x,t) ot Ox Ox

=C(x, t){% =-0(x, {)i|} dx

AC(x,t) _ OK(x,1) AC(x,1)

o] ()

Hence, we obtain

92 C(x 1)

-C(x,1)

§OCEN =], [G( 7 dex

aC(x 1) )

+J-LG(x,{)[6C(x,t)+ 1)

0 K(x,t) ot
_0k(x,1) 0C(x,1)
Ox 0x

-o(x, t)j dx

where

1 when 0<x<L
£(&)=1<1/2 when x=0orx=L, )
0 otherwise

Transforming the integral of the first term on the
right-hand side of (8) and exchanging x and &, we obtain
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BC(f )

-C(£.0)

&=L
s(x)C(x,z>={G( 9 aG("’ﬂ
£=0

o¢
G(x o . CED
@ "0

L G(x,¢)
1) d
A€ [ e CEnat

aé&  (10)

1G(x.8) 0C(E.0) ,
+.[o K(&, ) ot {+J.
~ IL G(x,§) 0k (£,1) 9C(E.0) ,

C k(&) 08 0

If we remove the spatial derivatives of C in the integrals
in (10), we obtain

£(x)Cr ) = - {G(xf)acgzzt) C(E )"G;’;ﬂ
=0
G(x, &) o {G(x,a IK(E, D) }“
C - C(¢,
{(5) u(é) (&t)LO ey aecen| .
LG ICED o b 0 [G)
Howan o 46 @ E[K(m u(&t)]dff
L 0 (GO IKED) s G
k! C(E’t)af[/((c‘,t) o ]d‘t Jeen o0

If C(x,t) at IP is known and C(x,) or 0C(x,t)/0x at
BP is known from the boundary conditions, then the integral
representations are integral equations with 0C(x,t)/0t the
unknown variables at IP and 0C(x,#)/0x or C(x,t) the
unknown variables at BP. We obtain C(x,#+dt) at IP from
C(x,t +dt) =C(x,t) +dt0C(x,t)/0t . If C(x,0) on IP is known
from the initial conditions, then we can solve the initial and
boundary value problem using the integral representations.

When the diffusion coefficient «(x,7) and the advective
velocity u(x,t) are given simply by

K(x,t) =K =const , (12a)
u(x,t) =U = const , (12b)
and (5) and (6) are substituted into (11), we obtain
e = [ 1x-61 258 a4 2 [ st
2K90
—LJ‘le—fl U(E,t)dc“rfIx—LIC(LJ)—*\XIC(OJ)
2k70 2k 2Kk (13)
_1‘X_L‘ AC(L,1) +1‘x| aC(0,7)
2 0Ox 2 0x

—%C(L,t) sen(x—L) +%C(O, £)sen(x)

3. Numerical Applications to
One-Dimensional (1D) Problems

For simplicity, we assume the conditions in (12) and
o =0. First, we transform the integral representation, (13),
into algebraic equations. We divide the region 0<x<L
into N equal elements of length drx and denote the
midpoint of each element as x, , i=0,1,---,N-1 as

follows:

(14)

and
x, =(0.5+i)dx . (15)
Equation (13) is approximated by
E0C(x;,t) pxj-af2
£(x)C(x,1) i/ ) ( )f' _,ﬁ//z| -¢ldé
V(:C(x], O] senx=)de
j
(16)

+Lie-ricwn-Lixcon
2K 2K

+ % sgn(L —x)C(L,t)+ % sgn(x)C(0,7)

_lecwn o 1econ,
O0x

2 oOx 2

We define a,; for the internal point (IP) x=x, and a,,,

for the boundary point (BP) x=0 or x=L as

5 dx*/4
a. = d
i J. d/2| ~élae= {|xi—x/|dx when i % j’

when i=j

(17a)

x,+d
@y =", | x=€ldE = xx | dv (17b)
Then we obtain the algebraic equations for IP ( x, ,
i=0,1,---,N-1) and BP (x,, =0, L), respectively, as

¥ 9C(x,,t
C(x;,0) :iza[/%
0

Zizj T san(x = HAEC(x, )

Ly -rjcan-Lixcon (18
2K 2K

+%sgn(L -x)C(L,t)+ % sgn(x)C(0,¢)

1 _Xi‘aC(L,t)_'_l‘xilaC(O,t)
2 Ox 2 0x

Nl OC(x/,t)
z BPj

2k =

Engn(x,j,, §)déC(x,,1)

2k %

1
2 Clxgp,1)

(18b)

U
+§‘XBP L|iC(L,t)~ ‘xBP|C(O 1)

+ % sgn(L —x,,)C(L,t)+ fsgn(xBP)C(O, 1)

1 0C(L,t
_E‘L_XBP‘ ;x )

1 | 9C0.0)
BP ax

There are two types of solution of these algebraic
equations, (18): explicit and implicit solutions.

Explicit solution A1
In the integral representation, (18), dC(x,t)/0¢ is used as
the main unknown variable.
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(1) Assume C(x,t) known.

(2) Obtain dC(x,1)/0r using (18).

(3) Obtain Cxr+d) from Clx.t+dt)=C(x,0)+(0C(x,0)/00)dt ,
(4) Repeat the process.

Implicit solution A2

In the integral representation, (18), C(x,t) is used as the

main unknown variable.

(1) Assume C(x,t—dt) known.

(2) Approximate aC(x,1)/01 in
dC(x,1)/0t =[C(x,0) = C(x,t —dt)]/dt ~ and
unknown variable C(x,?).

(3) Repeat the process.

If we use implicit solution, the stability of the numerical
calculation increases much, and we can use much larger
dt than the one used in the explicit method. The
non-homogeneous term of the integral equation must be
evaluated at ¢-0.5dr .

In the case of explicit solution Al, we use the following
algebraic equations and progression of time equation:

(18) by
solve for the

Clx, 1) - |x—L\C(Lt)+ %1€
—Esgn(L—xl-)C(L,t)—Esgn(x,-)C(o,t) (192)
LLCwn o 10c0n,
2 Ox 2 Ox
UM” ¥ AC(x,.1)
j ://2 sn(x, =6 dEC(,0 = Z; xf
1
2D - |xE,, L|C(Lt)+ I |C0.)
*Sgﬂ(L x5 )C(L, 1) = Sgn(xgp)C(O )]
ST Y| 6C(Ot)| | (19b)
2 a BP 2 a BP
x;=ds/2 e OC(xi,t)
ZL S0y, ) dEC(x, 1) = 7,20 T
C(xi,t+dt)=C(xi,t)+%dt (19¢)

The total number of the unknowns in the algebraic
equationsis N +2: where 9C(x,,)/0r for j=0,1,--,
and C(0,¢) or 8C(0,¢)/0x and C(L,t) or dC(L,t)/dx. The
total number of equations is also N+2 in total: N
equations for IP and 2 equations for BP.

In this case, all variables on IP and BP become unknowns.
Namely, we are facing a region-boundary element problem.

As an approximation, we use
dC(0,0)/dy = 2[C(x,,1) — C(0,6))/dx , if C(0,f) is known.
Otherwise, we use C(0,t) = C(x,,t) —[0C(0,t)/dx][dx/2 , if
aC(0,r)/ox is known. We use similar approximations for

x =L . In this case, the number of unknowns and the
number of equations are both N.

In solution A2, we can obtain the similar algebraic
equations as in solution Al.

N-1,

3.1. Diffusion of Material in Infinite Space without
Advection

We consider an initial value problem without advection in
the region -o<x<w (-L<x<L in computation) with
the initial condition C(x,0)=9J(x) . As a result of the
symmetry, we consider the region given by 0<x<o
(0<x<L in computation). We summarize the conditions as
follows:

Initial condition:

C(x,.,O):z—;C@O, P01 N1, (20)

where &, is the Kronecker delta: &,

;s 1 if i=j or
0 otherwise.

Boundary condition:

=0, C(L,))=0,

dC(0,1)
ox @h)

oL _,
Ox

Approximation : C(0,¢) = C(x,,?) (22)

In the case of procedure Al, we solve from (19) with
U=0

N-1 ac(x’t)
ZK[C(x,,t) C(xo,t)} ;ai"a—t/’
i=0,1,---,N—-1, (233.)
Clx,,t +df) = C(x,1) +@a}
t
i=0,1,---,N-1. (23b)

The solution of this problem is the well-known
fundamental solution of the linear 1D diffusion problem:

xZ

e 4/(['

C(x,t) = (24)

1
2\t

Numerical results are shown in Figs. 1 and 2. We used
procedure Al for the numerical calculation. The calculation

conditions are L=1, N=20, dt=0.0005 and v =0.089 .
The precision of the calculation is very high.

3.0 ——t= 0.1000

-=--t= 0.2000

2.5 peenst= 0,3000

1 == = 0.4000

204 =--=-t= 0.5000
&) 1.5
1.0+
0.5

0.0 —
UIU 0[2 054 UIE IﬁIS lltl

Figure 1. Calculated results at each time step.
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—— appr
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Figure 2. Comparison with the exact solution (t =0.5 ).

3.2. Diffusion of Material in Infinite Space with Advection

In the calculations in Section 3.1, we considered in the
region given by 0<x<ow (0<x<L in computation) using
symmetry. However, since this problem is asymmetric, we

must consider in the region given by -w<x<w
(-L<x<L in computation). When -L<x<L is large
enough, we can assume
+
w =0, C(+L,1)=0 25)
X

If we consider a doublet-type initial distribution of
material, the initial condition is given by

=0(x —dx/2) + d(x + dx/2)

C(x,0)= .

(26)
In this case, the size and center of elements are given by
(27a)
x, ==L+(0.5+i)dx, i=0,1,---,N-1. (27b)
From (26), the initial condition in this case is specifically

as follows:
1 1

C(XI,O) :_ﬁd/\l/z +$5HV/2+1 H i:0> 1""9N_15 (28)
since
1/dx in x,,, —dx/2<x<x,,, +dx/2
S(x—de/2) = N2 N/2
(x=dif2) {O otherwise » (299)
1/dx in x,,,, —dx/2<x<Xxy,,, tdx/2
5(x+dx/2): / [\/‘21 / N/2+1 / ) (29b)
0  otherwise

If we adopt the explicit solution A1, we have from (19)

N-1 N 0C(x,,t
2KC(,1)=U Y. sen(x, =x,)dx C(x,.1) = Za,»,—(a’;/ )|

=0 =0
i=0,1,---,N—1.
For the check of the calculation, we use

(30)

ro @, _ I:[‘U aC(x,1) +K62C(x,t)} 0

- Ot Ox ox’
s = @31
Z[-UC(x,t)+K C(x”)} =0
ox |
Hence, we have
Jm C(x,t)dx =const . (32)
The exact solution of the problem is given by
1 x-Ut -=9°
C(x,t)= e 33
(o) 2Kt 2kt (33)
23 —1=0.2
2 = - - -t=04
b Y [ U SE2 t=0.6
o] ——- =08
Y] -eme 21,0
=
6
8 ; : :
8- <+ 2 4
PR ) e
g -~ -1=0.4
I T 1=0.6
] —-= =08
o 29 - 1=1.0
44
4 2 0 X 2 4

Figure 3. Space distribution of C in case of doublet type initial
distribution of material: (a) approximate solution, (b) exact solution.(48)

Numerical results are shown in Fig. 3. We used Al
procedure for the numerical calculation. The calculation
conditions are L=4, N =160, dr=0.0005, x=0.089 and
U =1.0. The precision of the calculation is high.

4. Advection-Diffusion Equation in
Two-Dimension (2D)

The spatial coordinate and time are denoted as (x,y) and
t ,respectively. Let C(x,y,t), u(x,y,t) =u(x,y,0)i +v(x,y,0)j,
K(x,y,t) , and o(x,y,t) be the material density or
temperature, the advective velocity vector, the diffusion
coefficient, and the material source, respectively. The 2D
diffusion equation in region S is then written as

a—c+(uD]])C =00kOC)+o=kD’C+0kMC+0
o (34)
in§
Rewriting (34), we have
D2C=i[a—c+(uDD)C—DKDDC—aj, (35)
K\ Ot

The fundamental solution of Laplace operator, the
primary space-differential operator in this case, is defined as
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0°G(x.§) =d(x.8), (36)

and is given by

G(x,8) Zﬁlnr, (37
where (x,§)=d(x-&)A(y-n) and rax-§l=y(x=&’+(y-n) .
The fundamental solution G(x,&) satisfies

r_l
271 r?

(x=%)

0,6(x,8) = DG(X%)‘ =gl -

(3%

An extension to 3D may be straight forward. Let » in 3D

be  rax-g=J-&+(y-n*+(-¢)? and the
fundamental solution be

G(X,%) = —L

Amr (39a)

r_1 =9

0,6(x,8) = -1, G(Xé)‘— a7 x—tf -

4 (390)

And we replace area and line integrals by volume and area
integrals, respectively.
From (35) and (36), we have

0= J.J‘S{G(x,é){[liC(x,t)
1 (OC(x,t)

k(%0

+(u(x,)) M, ) C(x,)

—0.(x,) I0,C(x, 1) - 0(x,1) ﬂ
-C(x,0)[2G(x.) - 5(x,§)]} ds,
Hence, we obtain

£@)CEN ==[[ (G BDIC(x0 - CxNTG(x8))dS,
+J‘J‘ G(x,§) (aC(X,t) + (u(x,t) m, ) C(x,t)

sk(x,t)\ or 41)
-0 k(x,t) [0, C(x,1) - T (x, 1) st
where
1 when E00S
£()=11/2 when §0C | (42)

0 otherwise

and C is the boundary of §.
We transform the integral of the first term on the
right-hand side of (41). Using the vector formula:

G(x,8)0,C(x,1) =~ C(x,NT;G(x,8)

=0, {G(x,8)0,C(x,1)) -0, {C(x,n0,G(x,8)) (43)

we obtain

OC(X 1)

£@®)CE, t)‘—f [G(X 9 -C(x.0

+J'J' G(x,8) 0C(x, t)
S k(x,t) Ot

9G(x, é)J

ny

. ﬂsG( %8 (u(x,) I, ) C(x,0)dS,  (44)

-II. iz" GO0 5 y(x,) M.C(x, 1) dS, jj G(" g) a( x,1)dS,

where n is the unit outward normal on C . Exchanging x
and &, we have

eX)C(x,1) = —I [G( x,8) aC(é ) ) 0G(x, é)J

i i

+[[ SRR OGN 4 4 ] S8 (4 ym, ) cnas, (49)

K(E,t) Ot k(1)
G(x,8) G(x,8)
N e BHEN IS, = [[ 0@,

Removing the spatial derivatives of C(x,¢) in the area
integrals in (45), we have

5C(i 1)

-CGE.0

£0C(x,0 =~ {G(x ) 9G(x, i)}

G(x.8)
Cr(x.8)

+ ” G(x,8) 0C(&,1)
S k(1) Of

G(x.8) 0K(&.1)
kG on,
G(x.%)
K(x.)

DiK(i»l)] as, - [[. iizf))

22 CE, N, ) Ml L C(&,t)dl,

(46)

ds, —ﬁs CEno, u(g,t)] ds,
G(x,8)

+[[, ceno, &)

o(&,0)dS,

This equation does not include the spatial derivative of the
unknown variable C(x,7) in the area integrals.

If C(x,t) at IP and C(x,t) or AC(x,t)/on at BP are
known from the boundary conditions, the integral
representations are integral equations having unknown
variables 9C(x,r)/dt at IP and dC(x,7)/on or C(x,t) at BP.
We obtain C(x,t +dr) at 1P from
C(x,t +dt) = C(x,t) +dt0C(x,t)/dt . Specifically, if C(x,0) at
IP is known from the initial conditions, we can solve the
initial and boundary value problems using the integral
representations.

When the diffusion coefficient «(x,#) and the advective

velocity u(x,7) =u(x,t)i+v(x,f)j are given simply by

K(x,t) =K =const , (47a)
u(x,t) =Ui = const (47b)
and (37) and (38) are substituted into (46) , we obtain

E(X)C(X,1) =iﬂ In(|x-¢& D% s,

dn(x-8) ¢
C —_— - 27
ﬂ €n=—"3;
#o [ 0 x =8 DGO diy = [[ In( x-g &),
*jl(lx ?‘;DOC@ t)dl: ey WC@,:)%
3

If we consider the steady state, (48) with U =0 is the
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integral representation of the Poisson equation. Substituting
the boundary condition into (48) and considering on the

boundary C, we obtain the integral equation used in the
BEM.

5. Numerical Applications to
Two-Dimensional (2D) Problems

5.1. Diffusion of Material in Infinite Space without
Adbvection

For simplicity, we assume the conditions given in (47) and
o=0 . We consider the diffusion of a material placed
initially at the center of the coordinates in an infinite region.
In other words, the initial condition C(x,y,0)=3d(x,y) is
specified in the region - <x<oc and -cw<y<ow. Using
symmetry, we consider only the quarter region given by
0<x<L, 0Sy<B.

Assuming o(x,/)=0 and U =0, in this case, we have

£C(x,y,1)

- [le@on a
20

-y
(x=&)"+y

B X
2k COMD s (49)

TN R LR

where C and 9dC/dn are assumed to be zero on the
boundaries x=L and y=B.

For simplicity, we divide the region 0<x<L, 0<y<B
into MxN equal elements with sides dr and dy and

denote the center of each element as (x,y,) ,
i=0,1,---,M-1, j=0,1,---, N—1. In other words, we have

L B
dx=— , dy=— 50
o M Y N ( )

dx . .

xt.=7+ldx, i=01,---,M-1, (51a)

_dy . _
yj—7+]dy, j=01,---,N-1. (51b)

We summarize the initial and boundary conditions as
follows:
Initial condition:

1
C(x,'a y‘,' 90) = 4—5,05/0 >

dxdy
i=0,1,-,M~-1, j=0,1,--,N-1. (52)
Boundary conditions:
0C(0,y ..t
0.y, ):0, =01, N1 (53a)
Ox
M:O, i:(),l,"',M_l. (53b)
oy

Equation (49) is then approximated by the following
algebraic equation:

m=M -1 X, dX/Z
£C(x, y,t) ——— Z Cx,.0.0)[” _Mﬁdf
1" yu+dy/2 X
c,y,, ——d
R e (54)
_ 1 m=M-1n=N-1 ac(xm ’yn’t)
2 a3 i ot

X +dx/2 oy, *dy/2 3 3
j n(Jo= &)+ (v=n)* )déan
X =dx/2 y, =dv/2
As discussed in Section 3, there are two types of solution:
the explicit and implicit solutions. We use the explicit
solutions below and consider the two following solutions:
Solution Al.a. Only 9C(x,,y,,t)/dt atIP is unknown

We approximate the boundary value C(x,,0,/) and
C(0,y,,t) as follows:

m>

C(x,,0,0) = C(x,,5,1), C(0,3,,0)=C(x,,3,,1),  (55)

and the algebraic equation is approximated for
i=0,1,-,M~1, j=0,1,--,N-1 as
m=M -1 x,, /2 y;
C(x,,y],t) o z C(x,,, 75t )J. Cmmdf
7
n=N-1 +dy/2
— Clpy, 0| —————dn
Z 0 .[) dl/z_x +(y ,7) (56)
L PRI OC (5, 3,00)
2 5% s ot

X, *dx[2 oy, +dv/2
EJﬁ —dx/ZJ.-—d)/z ( (xf‘f)z*'(y, _O)Z)dgtdﬂ
The unknowns of this algebraic equation are dC/0r atIP,

and the number of the unknowns is M x N . The number of
equations is also M x N . Hence, we can solve this equation.
However, the precision is not high because of the
approximation in (55).

Solution Al.b. Both 9C(x,,y,,r)/or at IP, and C(x,,0,7)

and C(0,y,,t) at BP are unknown
For the
j = O’ 1’ e

internal point (x,y,) , i=0,1,--,M-1,

N -1, we have

1 ! x,, +dx/2
iy =~ Z Clx,.0.0[" Mmdg’
1 " ¥y X,
-— 0, ———d
27 & COrenf 7 o o

1 m=M-1n=N-1 aC(x,,,,y,,,t)
2ﬂV m=0  n=0 at

X, +dx/2 ¢y, +dy/2

T i (os =+ 0, —n)*)agan
for the boundary point on the
i=0,1,-, M -1,

(57a)

x-axis  (x,0) ,
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n=N-1

1 ¥, +dy[2 x.
SC000 = Z OO e
_ 1 m=M-1n=N- lac(xr”’yn’[) (57b)
277]/ m=0  n=0 6t
X, +dx/2 oy, +dy/[2
G (o -6+ (v, -0 )aéan
and for the boundary point on the y-axis (0,y)) ,
j=0,1,--,N-1
1 m=M -1 x,, +dx/2
_C(O Ry Z Clx,.0.0[ ", {2 d{
_ 1 m=M-1n=N-1 aC(xm ,y,,,t) (570)
2 m=0  n=0 at

X,y +dx/2 oy, +dy/2 5 Y
Iﬁxm—dx/Z v, —dy/2 ln( \J E + (y] /7) )dfd/?
The number of unknowns and the number of equations are

both M xN +M + N . Thus, we can solve the equation.
The exact solution of this problem is given by

e

e4l/l

1
Cleyn) = (58)

The numerical results are shown in Fig. 4. The conditions
of the calculations are L=B=1, M =N =20, dt=0.0005,
t=0.5, and x=0.089. The results indicate that Solution
A.1b is more precise than Solution Al.a.

20=

== (a) ——appr
1.5 - = = exact
1.0
(5]
05+
004
T T T T T T
20 00 02 04 x 08 08 1.0
(b) —appr
1.5 = = = exact
104
(8]
054
0.0+
T T T T T T
0.0 0.2 D4 x D06 08 1.0

Figure 4. Numerical results at 'y =0.025 (¢t=0.5 ), (a) Solution Al.a;
(b) Solution A1.b.

5.2. Diffusion of Material in Infinite Space with Advection

For simplicity, we assume the conditions given in (47) and

o =0. We assume that the advection velocity U is not zero.

In the calculations in Section 5.1, we considered in the
region given by 0<x<ow, 0<y<ow (0<x<L, 0<y<B
in computation) using symmetry. However, since this
problem is asymmetric, we must consider in the region given
by -w<x<ow , -wo<y<own (-L<x<L, -B<y<B in
computation). Namely, the size and center of elements are
given by

2L 2B
dx = , dy=— 59
7 YTy (39)
X, ==L+(0.5+i)dx, y,=-B+(0.5+))dy,
i=0,1, M—-1, j=0,1,-N-1.  (60)
The initial and boundary conditions are as follows.
Initial condition:
1
C(x,,0) = ?dya;w/zdf N2>
i=0,1,-,M~-1, j=0,1,-,N-1. 61)
Boundary condition:
cxn=0, 3&D
on C

C and 9C/dn are assumed to be zero on the boundaries
x=xL and y=%B.
We have from (48)

x=9
(=& +(y-n)’

B W N KL

ot

£C(x, 1)~ —j [" ceno dédn

(63)

The exact solution of this problem is given by

_ (x-Ur)* +yz
e 4kt

Clox ) = 4;(1 (64)

We use the explicit Solution Al. The numerical results are
shown in Figs. 5 and 6. The conditions of the calculations
are L=B=2, M=N=41, dt=0.0005, x=0.089, and
U=1.0. According to the results, the accuracy of the
numerical results is high. The numerical result at =125 is
affected by the boundary.

354
3.0+
254
204
15+
104
0.5
0.0 T

(@)

31 ()
3.0
25+
204
1.5
1.04
0.54

00 T T
-2 -1

Figure 5. Space distribution of C in case of source type initial value
(¥ =0): (a) approximate solution; (b) exact solution.
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Figure 6. Space distribution of C obtained by approximate and exact
solutions: (a) appr, t=0.75; (b) appr., t =1.25; (c) exact, t =0.75;
(d) exact, t =1.25.

6. Generalization to Generalized
Integral Representation Method
(GIRM)

6.1. Generalized Integral Representation Method (GIRM)
in 1D

We introduce a generalized space fundamental solution
G(x,&) defined as

0 0G(x, 0G(x,&) _ »
a{K(x,t) g’;a]m(x,t) gif):d'(x,f,t) (65)

where d(x,&) is derived from G(x,é) when G(x,&) is
specified. If we use the Gaussian function:

N.X = ! €X _(x_g)z
G(x,$) oy p[ 2 J, (66)
then G(x,é) and O(x,¢) satisfy
aG(x, - &)
T p[—("z 2 ] (679)
IGxd 1 =&’
o J_y*exl{ 2 J
L -&)’ (x=&’
- , 67b
" any p[ 2 J ©7
and
J(xft)——[K( t)aG(x 5)]+ (x t)aG("‘()
_ OK(x,1) 6G(x,{)+K(x’t)62G()§,E)+ x t)aG(x E)' 68)
Ox Ox Ox

Furthermore, when G(x,&) is defined as (66), and J
tends to zero, then G(x,&) and d(x,&) satisfy

é(xsf) - 5(3‘,5) H (69)
S(x,{,t) ~ 0K (x,t) 00(x,¢) FK(x1) 625()2,{)
Ox Ox Ox
(e 2058 (70)
Ox
where 9(x,&)=d(x—¢) is the Dirac delta function:
3(x,§)=0 for x# & and [~ (x,&)dx =1 (71)

Assuming (66), G(x,&) is not singular at x=¢ and
decreases rapidly as |x—¢| increases. These properties are

useful in the numerical calculations. We can increase the
accuracy of the numerical integration and reduce the
computation time.

From (1) and (65) we have

0= J' G(x, {) |« z)ac(" D) 0 2ED
Ox

-(—“’Csf’”—mﬂ

-C(x, z){ [K( z)aG(“{)}

+u(x,t)% - S(x,{,t):l} dx
X

Rewriting (72), we have
[ " Cnd(x, & 1) dx =

- J‘()L[G(x,{)a [K( z)ac(" ’)j C(x,z)é[x(x,r)%ﬂdx

[ G D e [t OO
0 X

(73)

Transforming the integral of the first and third terms on

the right-hand side of (73) and exchanging x and ¢, we
derive the generalized integral representation:

[[c@ndExnas

(72)

- C(&DK(ED—F—

{G(E OK(ED) C(:: 1)

GED ]|
o |,

HuendeEncen|l -
(GC(E 0 _

0 "”(‘:, D G(E)C(E ) dE

jG(é %) (f,r)jdf. (74)

This equation does not include the spatial derivative of the
unknown variable C in the integrals.

When p tends to zero, then (69) and (70) make the
generalized integral representation, (74), tends to the
differential equation, (1), at IP.
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If C(x,r) at IP and C(x,r) or 0C(x,t)/dx at BP are
known from the boundary conditions, then the generalized
integral representations are integral equations with
dC(x,t)/0t the unknown variables at IP and 0C(x,7)/dx or
C(x,t) the unknown variables at BP. We obtain C(x,z +dr)
at IP from C(x,t+dt)=C(x,t)+dtoC(x,t)/0t . If C(x,0) on
IP is known from the initial conditions, then we can solve the
initial and boundary value problem using the generalized
integral  representations. The generalized integral
representations are equivalent to the differential equations.

When the diffusion coefficient «(x,#) and the advective
velocity u(x,t) are given simply by

K(x,t) =K =const , (75a)
u(x,t) =U =const , (75b)
if we assume (66), (68) and (74) are given by
g(x,q‘,t)
. _(x=9H), =& _(x=¢
{ mﬁ""[ ] N "( 2 H
(x- 5) (x-&y
- , 76
any p[ 27 ] (76)
[[c@ndExnas
= [[Gen e e[ GiemaEnas
AC(L,t) dG(L,x)
l:G(L x)—= T, C(L,t)—a{ }
x| G, )6C(0t) C0.02G0:0)
oé 3
+U[@(L,x)C(L,z)]—U[@(o,x)C(o,z)]. (77)

6.2. Diffusion of Material in 1D Infinite Space with
Advection

We discussed the same problem in Section 3.2. For
simplicity, we assume (75) and =0 . We assume the
triangular initial distribution of a material, and the same
computation region given by -L<x<L 1is used. If we
assume L >>1 and

dC(2L,1)

=0 and C(xL,f)=0
Ox

(78)
the generalized integral representation is, from (77), given
by

GC(E 0 &

[ cendernae=] Gen==as (79

The initial value is specified as

C(x,0)= T( (80)

0, otherwise

Numerical results are shown in Fig. 7. We used procedure
Al for the numerical calculation. The calculation conditions
are L=4, N =80, 160, 320, df=0.001, 0.0005, 0.00025 ,

k=001 , U=20 , and y=0.16,0.08,0.04 . In the

calculations, Nor dx was chosen assuming a proper value
of the local Peclet number Udx/«, and then dr and y

were determined keeping the local Courant number
Udt/dx and the steepness of the Gaussian function dx/y

constant: 0.02 and 0.625 , respectively. If N was
increased, then the computational noise was eliminated, and
the precise results were obtained.

——t= 0.1000,
== =t= 0,2000/ 10 ) == =t= 0.2000

= 0,3000| 3
—--- 1= 0.4000
- - t= 0.5000,

(a)

o

—1= 6.1000
- - -1= 0.2000

= 0.3000
== t= 0.4000
== t= 0.5000

104 () - - -t= 02000 104 (g

4 2 0 2 H 4

Figiure 7. Space distribution of C in case of triangular initial
distribution of a material: (a) approximate solution (N =80 ); (b)
approximate solution (N =160 ); (c) approximate solution (N =320 );
(d) exact solution.

6.3. Generalized Integral Representation Method (GIRM)
in 2D

In the case of 2D, the diffusion equation is given by (34),
and we replace (65) by

(81)

The extension of the theory to 3D is straightforward. We
can use the Gaussian function as a generalized space

fundamental solution G(x,&):

0 Eﬁx(x,z)mé(x,g))+ (u(x,r) M)G(x,8) = d(x.E,1) .

G =7 exp(— ;;2 J : (82)
where r=x-&|=4/(x—&)* +(y-n)* . Then, we have
0G(x,8) ——(2—;) [ Zryzj (83a)
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= 1 2 2 2
0°G(x,8) =—Wexp[— zryz ]+ 27FTV exp(— zryzj (83b)
and
S(x.80 =0, f(x,00,G(x,8)+ (uD,)G(x,5)
= (0. x,0)H0.Gx.0)J+ K(xDD2G(x,8) + (@ D )G(x.E)
(84)

Whgn G(x,&) is defined as (82), and y tends to zero,
then G(x,&) satisfies

G(x.8) - A(x.8), (85)
where J(x,&) is the Dirac delta function in 2D:
O(x,8) = 8(x =3y =11) (86)

From (34) and (81), we have
0=[[ {6t {Dx M (x,0)0,C(x,0) - (u(x,1) @D, )C(x,1)

(BC(X Ny }

~cxn|0, dex,n0,G(x, g)) (u(x,0) D, )G(x.8)

~3(x&nds, . (87)
From (87), we derive the generalized integral
representation:
J’LC(g,r)o*(g,x,r)arsi
=-[ [G(& e 2D - e i 255N G& ")}u
i i

+f [u@,r)é(a,x)aa,z)]ﬁnd@ -[[ 6. men)GEncEnas,
+[[Gx )(BC@ 1) U(&,t)]dSE.

This equation does not include the spatial derivative of the
unknown variable C in the integrals on S.

When p tends to zero, then the generalized integral
representation, (88), tends to the differential equation given
by (34) at IP.

(83)

6.4. Diffusion of Material in 2D Infinite Space with
Adpvection

We discussed a similar problem in Section 5.2. The

computation region is given by -co<x<ow , -0<y<ow

(-L<x<L, -B<y<B incomputation). For simplicity, we
assume (47) and o0=0 . The generalized integral

representation is, from (88), given by
” CE NS (E x,1)dS, ” G x)—=" 6C(§ )dS (89)

The initial value is specified as
1(8x) (8yY
C > >O = || = .

(x,2.,0) GXI{ 2[Lj [BJJ (90)

Numerical results are shown in Fig. 8. We used the
explicit procedure Al for the numerical calculation. The

calculation conditions are L=B=4 , M=N=41 ,
dt=0.00025, x=0.01, U=1.0,and y=0.16. The accuracy
of the numerical results is high.

0.320250
0.640250
0.960250
1.280250
1.600250

1.0+
0.6+
0.6+
0.4
024
0.04

Q

104
0.84
0.6+
0.4+
02+
0.0+

0.320250
0640250
0.960250
1.280250
1.600250

Figure 8. Space distribution of C in case of Gaussian type initial value
(v =0): (a) approximate solution; (b) exact solution.

7. Conclusions

An integral representation is obtained using a
fundamental solution of a differential-type boundary value
problem. If the boundary conditions are substituted into the
integral representation, an integral equation is obtained. In
the 1D-problems, the diffusion of a material initially
concentrated at the center of the space with and without the
advection was discussed. The 1D-examples revealed the
basic aspects of the integral representation method. Similar
problems were also discussed in 2D. As shown in Figs. 1
through 6, the agreement of the numerical results with the
analytical ones was satisfactory. The diffusion and the
advection are properly calculated in the examples.

Furthermore, we proposed a generalized integral
representation method. The integral representation based on
the primary space-differentiation operator is one of the
generalized integral representations. In the generalized
theory, the fundamental function is chosen first, and the
differential equation is defined properly reflecting the
fundamental solution and the boundary value problem. In
the numerical examples, we used the Gaussian function as
the generalized fundamental solution. The stability and the
precision of the computation were satisfactory as shown in
Figs. 7 and 8. Assuming the Gaussian function as the
generalized fundamental solution, we can not only eliminate
the singularity but also localize the effect of a point on other
points in its neighborhood. These properties are useful in the
numerical calculations.
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