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Abstract: The thermodynamic first and second law analyses of a temperature dependent viscosity hydromagnetic 

generalized unsteady Couette flow with permeable walls is investigated. The transient model problem for momentum and 

energy balance is tackled numerically using a semi-discretization method while the steady state boundary value problem is 

solved by shooting method together with Runge-Kutta-Fehlberg integration scheme. The velocity and the temperature 

profiles are obtained and are utilized to compute the skin friction coefficient, Nusselt number, entropy generation rate and 

the Bejan number. Pertinent results are presented graphically and discussed quantitatively. 
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1. Introduction 

Thermodynamic irreversibility in the flow system 

provides information on the energy and power losses in the 

system. Minimization of entropy generation in the flow 

system enables for the parametric optimization of the 

system operation [1]. Thermodynamics analysis has three 

worthy foundations which basically are described by mass 

conservation equation, and the first and second law of 

thermodynamics [2]. The conservation of mass law 

explains the interactions of mass inside of a system and the 

first law clarifies the exchanges of energy from one system 

form to another system, and energy conservation in total. 

The second law gives a quantitative relation of the 

irreversibility of a system through entropy generation, the 

greater degree of irreversibility, the bigger of entropy 

production and the more energy consumption. Entropy 

generation destroy the available energy in the system. 

Therefore, in industrial and engineering systems such as 

magnetohydrodynamic (MHD) micro-pumps, micro-

electronic devices, electronic packages, cooling of nuclear 

reactors, MHD marine propulsion, MHD lubrication, etc., 

entropy generation minimization technique is important to 

optimize the performance of thermal-fluid devises. A 

magnetohydrodynamic (MHD) phenomenon refers to the 

outcome of mutual interaction between magnetic field and 

electrically conducting fluid flowing across it.  Since the 

pioneering work of Bejan [3, 4] on entropy generation 

minimization on engineering systems, considerable 

research studies have been carried out to examine entropy 

generation in fluid flows for various applications [5]. Salas 

et al. [6] analysed the second law for MHD induction 

devices, such as electromagnetic pumps, and electrical 

generators. Mahmud and Fraser [7] analytically 

investigated the entropy generation due to free convection 

in a porous cavity in the presence of magnetic field. Ibanez 

and Cuevas [8] considered a stationary buoyant MHD flow 

of a liquid metal immersed in a MHD flow through a 

vertical rectangular duct. They obtained the optimum 

conductance ratio of the wall in which the entropy 

generation is minimized. Eegunjobi and Makinde [9] 

studied the effect of Navier slip on entropy generation in a 

porous channel with suction/injection. The effect of 

Newtonian heating on entropy generation rate in a channel 

with permeable walls was reported by Makinde and 

Eegunjobi [10]. From the literature survey, it seems that the 

problem of entropy generation in a variable viscosity 

generalized unsteady MHD Couette flow with permeable 

boundaries has not received much attention.  

In this present study, both first and second laws of 

thermodynamics are employed to analyse the unsteady 

MHD Couette flow with variable viscosity and 



2 David Theuri and Oluwole Daniel Makinde:  Thermodynamic Analysis of Variable Viscosity MHD Unsteady Generalized  

Couette Flow with Permeable Walls 

suction/injection. The transient problem is tackled 

numerically using a semi-discretization finite difference 

method while shooting method coupled with a Runge-

Kutta-Fehlberg integration scheme is employed to solve the 

steady state problem. Pertinent results are presented 

graphically and discussed quantitatively. 

2. Problem Formulation 

We consider an unsteady, incompressible, laminar flow 

of an electrically conducting variable viscosity fluid 

between a fixed permeable lower plate and a moving 

permeable upper plate. The fluid is acted upon by a 

constant pressure gradient and an external uniform 

magnetic field is applied perpendicular to the plates as 

illustrated in figure 1. It is assumed that the fluid is injected 

uniformly into the channel at the lower plate while the 

uniform fluid suction occurs at the moving upper plate. A 

transverse magnetic field with strength B0 is applied 

parallel to the y-axis. There is no applied voltage and the 

magnetic Reynolds number is small, hence the induced 

magnetic field and Hall effects are negligible. 

 

Figure 1. Schematic diagram of the problem 

Under these assumptions, the governing equations for the 

momentum and energy balance in one dimension can be 

written as follows [5-10] 
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subject to the following initial and boundary conditions: 

u(y,0)=0,T(y,0)=0                              (3a) 

u(0,t) = 0, T(0,t) = T0                           (3b) 

u(h, t) = U, T(h, t) = Th                         (3c) 

where h is the channel width, u is the velocity of the fluid, t 

is the time, P is the fluid pressure, V is the uniform suction / 

injection velocity at the channel walls, U is the uniform 

velocity of the upper wall, α is the thermal diffusivity, ρ is 

the fluid density, σ is the fluid electrical conductivity, k is 

the thermal conductivity coefficient, cp is the specific heat 

at constant pressure, T is the fluid temperature, T0 is the 

lower stationary wall temperature and T0 is the upper wall 

temperature. The temperature dependent viscosity µ  can 

be expressed as  

0( )
0( )

m T T
T eµ µ − −=                           (4) 

where m is a viscosity variation parameter and 0µ  is the 

fluid dynamic viscosity at lower fixed wall. Using (1) and 

(3b), the constant axial pressure gradient will be given as  
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and equations (1) and (2) then become 
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We introduce the following non-dimensional quantities:  
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Substituting equation (8) into equations (6)-(7), we 

obtain  
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where  

Re
Vh

υ
= (Reynolds number), 

P r
υ
α

= (Prandtl number), 

2
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−
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2 2
0

0

B h
Ha

σ
µ

=  (Magnetic field parameter), 

0( )hm T Tε = −  (Viscosity exponent).  

Other important physical quantities of interest in this 

problem are the skin friction coefficient Cf and Nusselt 

number Nu which are defined as: 
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,
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= =
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where the skin friction wτ , heat flux qw at the channel 

walls are given by 
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Substituting equation (14) into (13), we obtain 

0,1 0,1

,f

w
C e Nuεθ

η η

θ
η η

−

= =

∂ ∂= =
∂ ∂                       (14) 

 

3. Numerical Procedure (Transient 

Flow) 

Here, the governing nonlinear equations (8)-(10) are 

disretized based using finite difference on a linear Cartesian 

mesh and uniform grid. The second and first spatial 

derivatives are approximated with second-order central 

differences. The semi-discretization scheme for the velocity 

and temperature component reads as: 
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with initial conditions  

(0 ) 0 , (0 ) 0i iw θ= =                        (17) 

where ( ) ( , )i iw wτ η τ= , ( ) ( , )i iθ τ θ η τ= , w1 = θ1 = 0, wN+1 

= θN+1 = 1 and the spatial interval [0, 1] is partition into N 

equal sub-intervals. The grid size and the grid points are 

define as 1 / Nη∆ =  and ( 1)i iη η= − ∆ , 1 1i N≤ ≤ + . 

The resulting nonlinear system of initial value problem is 

then solved iteratively using the initial value solvers like 

Runge-Kutta Fehlberg integration scheme [11]. 

4. Steady Flow Analysis 

For a given set of parameter values, the reactive third 

grade flow evolves in time until a steady state condition is 

attained. Whenever this happens, equations (13)-(17) then 

become, 
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It is important to note that ε = 0 corresponds to the case 

of constant viscosity conducting fluid. The exact solution of 

equation (18) for the fluid velocity is possible under this 

constant viscosity scenario and we obtain 
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−

                        (21) 

where ( )2Re Re 4 2a Ha= + +  and ( )2Re Re 4 2.b Ha= − +  

Equations (18)-(20) represent a nonlinear boundary value 

problem and this precludes its exact solution.  In order to 

tackle the problem numerically, shooting method coupled 

with Runge-Kutta Fehlberg integration scheme is employed 

[11].  Firstly, the model nonlinear boundary value problem 

is reduced to a system of initial value problem. Let  

1 2 3 4, , ,w x w x x xθ θ′ ′= = = =             (22) 

where the prime symbol denotes the derivative with respect 

to η. Substituting equation (22) into equations (18)-(20), 

we obtain 
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subject to the following initial conditions; 

1 2 1 3 4 2(0) 0, (0) , (0) 0, (0)x x s x x s= = = =   (24) 

The unspecified initial conditions s1 and s2 in equation 

(24) are obtained iteratively using the Newton-Raphson 

algorithm together with Runge-Kutta Fehlberg integration 

scheme to a given terminal point η = 1. For a fixed set of 

parameter values, the accuracy of the missing initial 

conditions was checked by comparing the calculated value 

with the given value at the terminal point. The 

computations were done by a written program in MAPLE 

with a step size of ∆η=0.001
 
selected to be satisfactory for 

a convergence criterion of 10
-7 

in nearly all cases. 

5. Entropy Analysis  

Magnetohydrodynamic and heat transfer processes in a 

generalized Couette flows with permeable boundaries are 

irreversible. This inherent irreversibility arises due to the 

exchange of energy and momentum within the fluid and at 

permeable boundaries, thus resulting in entropy generation. 

Following Wood [2], the local volumetric rate of entropy 

generation EG for a viscous incompressible conducting 
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fluid in the presence of magnetic field is defined by 

2 2 2
20
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The first term in equation (26) is irreversibility due to 

heat transfer, the second term is entropy generation due to 

viscous dissipation and the third term is local entropy 

generation due to the effect of the Joule dissipation. 

Substituting equation (8) into equation (25), we obtain the 

dimensionless form of local entropy generation rate as 
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where 
0 0( ) /hT T TΩ = −  is the temperature difference 

parameter and Br = EcPr is the Brinkman number. The 

Bejan number Be is define as 

1 1
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where Ns = N1 + N2, 
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 (Heat transfer irreversibility),  
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 (Fluid friction and magnetic 

field irreversibility), 

1

2

N

N
=Φ (Irreversibility ratio). 

Equation (27) shows that Bejan number ranges from 0 to 

1. Be = 0 is the limit where the irreversibility is dominated 

by the combined effects of fluid friction and magnetic 

fields and Be = 1 is the limit where the irreversibility due to 

heat transfer dominates the flow system by virtue of finite 

temperature differences. 

6. Results and Discussion 

Numerical solution for the representative velocity field, 

temperature field, skin friction, Nusselt number, entropy 

generation rate and Bejan number have been carried out by 

assigning some arbitrary chosen specific values to various 

thermophysical parameters controlling the flow system (see 

figures 2 -10). The Prandtl number (Pr) is assigned the 

values ranging from (Air) 0.71 ≤ Pr ≤ 7.1(water) which are 

the most encountered fluids in nature and frequently used 

in engineering and industries.  

6.1. Transient Velocity and Temperature Profiles 

Figures (2)-(4) illustrated the effects of unsteadiness on 

the velocity and temperature profiles. Velocity increases 

from its zero value in time and space at the lower fixed 

plate to its maximum value at the upper moving plate (see 

figure 2a,b). Similar trend is observed with temperature 

profile with lowest value at the lower fixed plate and 

highest value at the upper moving plate satisfying the 

prescribed initial and boundary conditions. An increase in 

time, increases the fluid velocity and temperature across the 

channel until a steady state is achieved as shown in figures 

(3a,b) and figures (4a,b). Moreover, near the moving upper 

plate, it is interesting to note that both the velocity and 

temperature oscillate with decreasing amplitude until a 

steady state is achieved. The velocity profiles attained the 

steady state faster than the temperature profiles. For 

instance, steady state temperature is attained at τ ≥ 0.6 

while for the same parameter values; steady state velocity 

is attained at τ ≥ 0.4. This may be attributed to the fact that 

velocity and velocity gradient serve as heat sources for the 

temperature through Joule heating and viscous dissipation. 

 

Figure 2a. Fluid velocity profiles across the channel with increasing time 

 

Figure 2b. Fluid temperature profiles across the channel with increasing 

time 

 

Figure 3a. Fluid velocity profiles across the channel with increasing time  

 

Figure 3b. Fluid velocity profiles across the channel with increasing time  



 Applied and Computational Mathematics 2014; 3(1): 1-8 5 

 

 

Figure 4a. Fluid temperature profiles across the channel with increasing 

time 

 

Figure 4b. Fluid temperature profiles across the channel with increasing 

time 

6.2. Steady State Velocity and Temperature Profiles 

The numerical results displayed in table 1 represent a 

comparison between the exact solution in equation (22) and 

the shooting method numerical solution. The excellent 

agreement attests to the credibility of our numerical 

procedure. 

Table 1. Computation showing comparison between the exact and 

numerical solution of velocity profile for Re = 1, Ha =1, ε = 0. 

ηηηη Exact Solution w(ηηηη) Numerical Solution w(ηηηη) 

0 0 0 

0.1 0.08812141 0.08812141 

0.2 0.17591234 0.17591234 

0.3 0.26426209 0.26426209 

0.4 0.35415939 0.35415939 

0.5 0.44671325 0.44671325 

0.6 0.54317727 0.54317727 

0.7 0.64497804 0.64497804 

0.8 0.75374838 0.75374838 

0.9 0.87136619 0.87136619 

1.0 1 1 

Figures (5a,b) illustrate the effects of increasing 

parameters Ha, Re and ε on steady state velocity profiles. 

An increase in magnetic field intensity (i.e. Ha increasing 

values) causes a decline in the fluid motion towards the 

upper moving plate. This may be attributed to the resistive 

force called Lorentz force which tends to oppose the fluid 

motion toward the upper plate. The trend is opposite with 

increasing Re, leading to a rise in the fluid motion towards 

the upper moving plate due to increasing suction. An 

increase in the viscosity exponent ε causes a rise in the 

fluid motion towards the upper moving plate as a result of 

decreasing fluid viscosity.  

 

Figure 5a. Effect of increasing Ha and Re on velocity profiles 

 

Figure 5b. Effect of increasing ε on velocity profiles 

Figures (6a,b) depict the effects of increasing Ha, Re, Pr 

and Ec on temperature profiles. A rise in magnetic field 

intensity (Ha) causes an increase in the fluid temperature 

within he channel. This may be explained as the effect of 

internal heating generation due to Joule dissipation. An 

increase in Re due to the combined effects of fluid 

injection/suction causes a fall in the fluid temperature. As 

in Ec and Pr rise, the fluid temperature increases due to 

viscous heating effect, this acts as a source to temperature 

field. It is noteworthy that elevation in temperature field is 

more pronounced at high Prandtl number (Pr= 7.1) in 

comparison to that of low Prandtl number (Pr=0.71) flow. 

 

Figure 6a. Effect of increasing Ha, Re on temperature profiles 
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Figure 6b. Effect of increasing Pr, Ec on temperature profiles 

6.3. Skin Friction and Nusselt Number 

Figures (7) –(8) illustrate the effects of increasing Ha, Re, 

ε on the skin friction and the rate of heat transfer at both 

lower fixed plate and the upper moving plate. The skin 

friction reduces with an increase in Re and ε  but increases 

with a rise in Ha at the lower fixed plate. The trend is 

reversed at the upper moving plate. The skin friction 

decreases with an elevation in the magnetic field intensity 

but increases with an increase in Re and ε (see figures 7a,b). 

This may be attributed to the fact the a decrease in fluid 

viscosity enhances the velocity gradient at the upper 

moving plate while the Lorentz force due to magnetic field 

acts in opposite manner. In figure (8a,b),  the Nusselt 

number Nu decreases with an increase in Re and ε but 

increases with an increase in Ha at the lower fixed plate 

surface. Meanwhile, the rate of heat transfer at the upper 

moving plate increases with an increase in Re, ε  and Ha. 

This is expected, since temperature gradient at the upper 

moving plate increases due to a rise in fluid suction and a 

decline in fluid viscosity, consequently, the heat transfer 

rate increases. Increases in Ha in the presence of suction 

also enhance the temperature gradient slightly at the upper 

moving plate.  

 

Figure 7a. Skin friction at the lower plate with increasing Ha, Re, ε. 

 

Figure 7b. Skin friction at the upper plate with increasing Ha, Re, ε. 

 

Figure 8a. Nusselt number at the lower plate with increasing Ha, Re, ε. 

 

Figure 8b. Nusselt number at the upper plate with increasing Ha, Re, ε. 

6.4. Entropy Generation Rate 

Figures (9a,b) illustrate the effects of increasing Ha, Re, 

BrΩ-1
 and ε  on local entropy generation rate. The presence 

of the magnetic field (Ha) causes a decline in the entropy 

generation across the channel with more entropy generation 

at the lower fixed plate and less entropy production at the 

upper moving plate. A reverse trend is observed with an 

increase in Re. The Ns is depressed at the lower fixed plate 

and enhanced at the upper moving plate with increasing Re. 

An increase in group parameter BrΩ-1
 due to viscous 

dissipation causes the entropy production to increase. Less 

entropy is generated at the lower fixed plate and more at 

the upper moving plate with increasing viscosity exponent 

ε due to a decrease in fluid viscosity. 

 

Figure 9a. Effect of increasing Ha and Re on entropy generation rate. 
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Figure 9b. Effect of increasing BrΩ-1 and ε  on entropy generation rate 

6.5. Bejan Number 

Figures (10a,b) depict the effects of increasing Ha, Re, 

BrΩ-1
 and ε on Bejan number. Irreversibility due to fluid 

friction and Joule heating become dominant at the lower 

fixed plate region while the heat transfer irreversibility 

become dominant at the upper moving plate region with 

increasing magnetic field (Ha). Increasing Re causes heat 

transfer irreversibility to intensify at the lower fixed plate 

while viscous and Joule heating irreversibility becomes 

dominant at the upper moving plate. The group parameter 

BrΩ-1
 increases the fluid friction and Joule heating 

irreversibility across the channel.  Moreover, a decrease in 

fluid viscosity increases the dominant effect of heat transfer 

irreversibility. 

 

Figure 10a. Effect of increasing Ha and Re on Bejan number. 

 

Figure 10b. Effect of increasing BrΩ-1 and ε  on Bejan number. 

7. Conclusions 

Computational model and thermodynamic analysis of a 

temperature dependent viscosity hydromagnetic 

generalized unsteady Couette flow with permeable walls is 

presented. Using a semi-discretization method together 

with shooting iteration scheme both the transient and steady 

state problem are numerically tackled. Some of the results 

obtained can be summarized as follows: 

• Both the fluid velocity and temperature increases with 

time across the channel until a steady state is achieved. 

The velocity profiles attained steady state faster than 

the temperature profiles. 

• Increase in Re, ε increases fluid motion towards the 

upper moving plate while increase in Ha increases 

fluid motion towards the lower fixed plate. 

• Fluid temperature at the lower fixed plate region 

increases with Ha, Ec, Pr while increase in Re, ε 

increases the temperature at the upper moving plate 

region.  

• Skin friction increases with Ha but decreases with Re 

and ε at the lower fixed plate. The situation is 

reversed at the upper moving plate. 

• Nusselt number increases with Ha, Re, ε at the upper 

moving plate while at the lower fixed plate, Nu 

decreases with Re, ε, and increases with Ha.    

• Local entropy generation rate increases with BrΩ-1
 but 

decreases with ε. Increase in Ha decreases entropy 

production at the moving upper plate while increase in 

Re decreases entropy generation at the lower fixed 

plate.  

• A decrease in fluid viscosity increases Bejan number 

while an increase group parameter BrΩ-1
 decreases 

Bejan number. Increase in Re increases Be at the 

lower fixed plate and decreases Be at the upper 

moving plate. The situation is reversed with 

increasing Ha.  
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