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Abstract: In this paper Hirota bilinear method is applied to constructing Backlund transformation of the Boussinesq equ-

ation. The bilimear Backlund form are used to obtain the soliton solution of the Boussinesq equation. Also as an application 

for the bilinear Bӓcklund transformation, new classes of wave solutions to the Boussinesq Equation are computed. 
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1. Introduction 

Searching for exact solution to nonlinear equation of ma-

thematical physics are significantly important. The trans-

formed rational function method [1] and multiple exp-

function method [2] provide some generic approaches for 

constructing travelling wave solutions and multiple wave 

solutions respectively. Perturbation expansion method pro-

posed by Hirota [3] often generates a specific class of mul-

tiple wave solution including the N-soliton solutions, pro-

vided that the equation possesses a Hirota bilinear form. 

Also linear superposition principle may apply Hirota bili-

near and in particular linear subspaces of solutions for non-

linear equations [4]. Another powerful approach to solution 

of nonlinear equation are the Bӓcklund Transformations, 

they can be written as Hirota bilinear form when the equa-

tion under consideration has a bilinear form [5,6]. The Bili-

near Bӓcklund Transformation is essentially defined as pair 

of partial differential relation involving two independent 

variable and their derivatives, which together imply that 

each one of the independent variable satisfy a partial diffe-

rential equation [7,8]. Thus, for example, the transforma-

tion 

( , , , )
x x

F xψ ϕ ψ ϕ=  

would imply that ϕ  and ψ  satisfy partial differential 

equations of the operational form, 

( ) 0P ϕ =  

2. Bilinear Form 

We consider the following (1+1)-dimensional nonlinear 

equation 

2 2 2 4

2 2 4
0

u u u

t x x

∂ ∂ ∂+ + =
∂ ∂ ∂

                      (1) 

Under the dependent variable transformation 

                                 (2) 

equation (1) can be mapped into the Hirota bilinear equa-

tion 

2 4( ) . 0t xD D τ τ+ =                           (3) 

where the bilinear differential operator D is defined by 

0 , 0

( , ) ( , )

( , ) ( , ) |

m n

t x

m n

s ym n

D D a t x b t x

a t s x y b t s x y
s y

= =

=

∂ ∂ + + − −
∂ ∂

   (4) 

We can re-write equation (1) in terms of as follows: 

 

4 2 3

4 2 3

2
2

2

4

3 0

x t x x

x t

τ τ τ ττ

τ τ

 ∂ ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ 

 ∂ ∂+ − = ∂ ∂ 

                        (5) 

In this work, we would like to present a bilinear Bӓ

cklund transformation for equation (1) as proposed in [10]. 
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Let us suppose that we have another solution 'τ  to the 

equation 

(
2

tD  + 
4

xD ) 'τ . 'τ  = 0            (6) 

and we will produce the key function 

P = [( D
2

t
+

4

xD )τ .τ ] '2τ - [(
2

tD +
4

xD ) 'τ . 'τ ] 2τ (7) 

If 0P =  then 

τ  is a solution of (3) ⇔  'τ  is a solution of (3) 

Therefore, if we can obtain from 0P =  by interchang-

ing the dependant variable τ and 'τ , a system of bilinear 

equation that guarantees P = 0 

B i  ( D t , D x ) τ . 'τ  = 0, 1 ≤ i ≤ M 

where the i
B ’s are polynomial in the indicated variables 

and M is natural number depending on the complexity of 

the equation. A question now arises; is 0P =  has unique 

solution? Otherwise, how to get all the solutions? 

The answer to the first part of the equation may be No. 

for the second part of the equation, it is known that Hirota’s 

bilinear operator identities are the key to break P into a 

system of polynomials i
B ’s the following the lemmas are 

useful in generating all the nontrivial identities. Lemma: 

Let ( ) ( )[ , ] , ( , )i jD f g i j J= ∈ℝ  be the polynomial algebra, 

where J denotes the space of multi-indices ( 1 2( , ,.., )ni i i ). 

In this algebra, we have the derivations 

m
∂ ( 1,..., )m n=  Which act in the very direct way, 

( 1 ) ( 1 )( ) ( )( ) ( )

1 (0,..., 0,1,0,..., 0),

m mi ji i

m m

m

f f and g g

where

+ +∂ = ∂ =
=

     (7) 

Where1 (0,..., ,1,0,...,0)
m

o= , the thm basis vector in the 

n-dimensional Euclidean space. 

Lemma. Let :
m

D D D D D⊗ → ⊗ be the linear map: 

( ) ( ) ( )m m mD a b a b a b⊗ = ∂ ⊗ − ⊗ ∂  

Then 

exp( )( ) exp( ) exp( )m m mD a b a⊗ = ∂ ⊗ −∂  

Observe that the image of the map mD  is again in D ⊗ D  

and not in D  which makes this map not similar to the usual 

one. To get the usual Hirota derivatives [6] mD we have to 

project the image of mD to D : 

Letting ,D D D⊗ →  ∏ ,
( )

i i i i
a b a b⊗ =∑ ∑  be the pro-

jection map, then ( ) ( ),k k

m mD a b D a b⊗ = ∏ ⊗  1,2,3,....k =  

Lemma: let ,i i i i i ia andα β γβ γ∂ = ∂ ∂ = ∂ ∂ = ∂∑ ∑ ∑  

and let ,D Dα β  and Dγ  be the corresponding projected Hi-

rota derivatives then we have all , , ,a b c d D∈  

exp( )[exp( )( ) ( )( )]

1
exp( ( ))

2

1
[exp( ( ) )( )

2

1
exp( ( ) )( )]

2

pD D a b exp D c d

D D

D D D a b

D D D a b

α α

β α

β α α

β α α

⊗ ⊗ ⊗ =

−

− + ⊗

⊗ + − ⊗

    (9) 

Note that the above identity gives all possibility for re-

mitting 0P =  in the form 

'. 0
i

β τ τ =∑                                               (10) 

through the relation exp( ) exp( )i i i iD D∈ = ∏ ∈∑ for ex-

ample, letting , ,k l m J∈ by taking a b τ= =  and 'c d τ= =  

the coefficient of k l mα β λ  in equation…(9) gives the fol-

lowing identity 

' '

... ... ' ... '

[ ( . ). ( . )]

[ ( . ). ( . )]

k l mD D D

D D D

τ τ τ τ
τ τ τ τ

=

∑
                (11) 

it is easy to check that an expression of such type is not 

unique if we take a b c τ= = =  and 'c d τ= =  

The coefficients of k l mα β λ  in the equation….(9) give 

the following identity 

' '

... ... ' ... '

[ ( . ). ( . )]

[ ( . ). ( . )]

k l mD D D

D D D

τ τ τ τ
τ τ τ τ

=

∑
                     (12) 

Let us now introduce the following identities which are 

useful for Hirota’s bilinear operators: 

( . ). ( . ). ,D D a b ab D D a b baη ζ ζ η=      (13) 

. ( . ) ( . ),D ab cd D a b cb ad D c bη η η= − (14) 

2 2 2 2( . ) ( . ) 2 ( . ). ,b D a a D b b a D D a b baζ ζ ζ ζ− = (15) 

2 2( . ) ( . ) 2 ( . ).b D D a a D D b b a D D a b baη ζ η ζ ζ η− =  (16) 

2 3 3 2

3

( . ) ( . )

2 ( . ). 6 ( . ).( . )

b D D a a D D b b a

D D a b ba D D D a b D b a

η ζ η ζ

ζ η η η ζ η

−

= +
(17) 

Note that the above identity can be obtained from the 

identity in lemma 7 for more identities and general ex-

change formulae, you are referred to see [9] Applying the 

above identities to equation (5) We can obtain 

'2 2 ' ' 2 ' '( . ) ( . ) 2 ( . ).t t t tD D D Dτ τ τ τ τ τ τ τ τ τ− =  (18) 

and 

21 4 4 1 1 2

3 1 1 2 1 1

( . ) ( . )

2 ( . ). 6 ( . ).( . )

x x

x x x x x

D D

D D D D D

τ τ τ τ τ τ
τ τ τ τ τ τ τ τ

− =

+
      (19) 
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Substituting the above result into the right hand side of 

equation (5), we can obtain 

' ' 3 ' '

2 ' '

2 ( . ). 2 ( . ).

6 ( . ).( . )

t t x x

x x x

P D D D D

D D D

τ τ τ τ τ τ τ τ
τ τ τ τ

= +

+
          (20) 

One can observe that P = 0 has more than one unique so-

lution, and the Hirota’s bilinear operators identities of the 

type (13)-(17) was not able to provide general bilinear sys-

tems. We will then use to resulting transformation to obtain 

multiple solution to equation (1) let us now introduce new 

arbitrary parameters η  are Ԑ i  (i =1,2,3) into equation (20) 

to obtain 

1 1

3 1 1

2

2 1 1

2 [( 3 ) . ].

2 [( 3 ) . ] .

6 [( ) . ].( . )

a

t t x i

x x t

x x x x

P D D D

D D D

D D D D

η ε τ τ τ τ
η ε τ τ τ τ

η τ τ τ τ

± = ± +

± +

±

∓

∓           (21) 

this is possible because the coefficient of 1 2, andη ε ε  

' ' ' ': 6 ( . ). 6 ( . ).t x x tD D D Dη τ τ τ τ τ τ τ τ± ∓  

' '

1 : 2( . ).tDε τ τ τ τ∓  

' '

2 : 2( ).tDε ττ τ τ±  

': 6 [ . ].( '. )x x xD D Dµ τ τ τ τ±  

are all equal to zero due to the following properties 

. 0D f fζ =                                      (22) 

. .D f g D g fζ ζ= −                               (23) 

( . ). ( . ).D D f g gf D D f g gfη ζ ζ η=          (24) 

Then 0ap± =  if 
1. 0 ,1 3iB iτ τ = ≤ ≤  where '

i
B s  

can be found from equation (21) as follows 

' '

1

' 3 '

2 2

' 2 '

3

. ( 3 ) .

. ( 3 ) .

. ( ) .

i t x

x t

x x

B D D

B D D

B D D

τ τ η ε τ τ
τ τ η ε τ τ
τ τ µ τ τ

 ≡ ±


≡ ±
 ≡ ±

∓

∓        (25) 

the coefficients of ,η µ , 1
ε  and 2

ε  are equal to zero be-

cause of the equation (22)-(24) this shows that the system 

(25) presents a bilinear bӓcklund transformation for (1). 

Travelling Wave Solution 

We now present an application of the bilinear Bӓcklund 

transformation (25 ) in order to construct a new class of 

solution to equation (1). For this reason, we begin with 

1τ = , which is the trivial solution of the equation (3), ob-

viously noting that 

.1 ,
n

n

n
Dη

ϕϕ
η

∂=
∂

 1,n ≥                        (26) 

the bilinear Bӓcklund transformation (25) associated 

with 1τ =  become a system of linear partial differential 

equations: 

' '
'

1

3 ' '
'

23

3 ' '
'

23

2 ' '

2

3 0

3 0

3 0

0

t x

x t

x t

x x

τ τη ε τ

τ τη ε τ

τ τη ε τ

τ τµ

∂ ∂± = ∂ ∂
∂ ∂ ± = ∂ ∂


∂ ∂ ± =
 ∂ ∂


∂ ∂ ± =
 ∂ ∂

∓

∓

∓

                    (27) 

Let us consider a class of exponential wave solution of 

the form 

01 0
1 , cos

kx wt
e t

ζτ ε ζ− += + =            (28) 

where ,k and wε  are constants to be determine. On select-

ing 

1 2
0, 0ε ε= =                                (29) 

and after some straightforward calculation, we can set 

3 ,w k kη µ= ± = ∓                           (30) 

therefore, we obtain a class of exponential wave solution 

to the equation (3) 

1 01 exp( 3 )kx ktτ ε η ζ± = + +∓          (31) 

where , ,kε η and µ  are arbitrary constants; and 

1
6( )xU Inτ±=  

solves equation (1). 

Let us now consider a second class of first order poly-

nomial solution 

' ,kx wtτ = −  

where k and w are constants to determined 

again on selecting 

1 2
0, 0ε ε= =  

a direct computation shows that the system (27) becomes 

3w kη= ±  

3 0wη± =  

0kµ± =  

which gives 
' 0τ ± =  

3. Conclusions 
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The bilinear Backlund Transformation for the nonlinear 

Boussinesq equation was constructed base on the existence 

of exchange identities for Hirota bilinear operators. Also 

and application for the bilinear Backlund transformation 

was used to construct a new class of exact wave solutions 

for the Boussinessq equation. 
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