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Abstract: Bearings are one of the most widely used components of rotating machinery, whose failure can cause serious 

injuries and economic losses, therefore bearing fault diagnosis is an essential step in maintaining the safe and stable operation of 

industrial processes. Bearing fault diagnosis aims to detect the bearing fault condition and accurately classify it into a fault 

category based on sensing signals, such as vibration data. In practical applications, bearings always work in different types of 

equipment and under various working conditions, leading to performance degradation of diagnosis models due to the domain gap 

between the training data and the test data. Domain adaptation has been developed to address the domain shift problem in bearing 

fault diagnosis with demonstrated efficacy. Current domain adaptation models focus on the single-source scenario, by ignoring 

that sensing data may be collected from multiple sources in practical applications, and then be annotated for mode training. In 

this situation, it is non-trivial to use the single-source domain adaptation model to address the multi-source domain shift problem, 

because the domain gap exists among the source domains and the target domain. To solve this problem, we propose a novel 

bearing fault diagnosis model based on classification decision fusion to address the problem of multi-source domain conversion. 

Firstly, we train a source-aware fault diagnosis model in each source domain and then use it to predict the fault labels of the target 

samples. Second, a similarity score between each source domain and target domain is computed based on their feature 

distributions using local discriminant analysis and Maximum Mean Discrepancy. Finally, the similarity scores are used as 

domain weights in a proposed classification decision fusion strategy that uses a weighted linear combination process of predicted 

fault labels to provide the final predicted labels for the target samples. The benefits of the adaptive weighting fusion based on the 

classification result level, which makes full use of the available data from multiple source domains, measures the differences in 

distribution between the source and target domains and automatically adjust the weights to improve the diagnostic capability of 

the target domain. The effectiveness of the proposed method for diagnosing bearing faults under different operating and 

measurement conditions was verified using a bearing data set provided by Case Western Reserve University. 

Keywords: Multi-source Domain Transfer, Bearing Fault Diagnosis, Classification Fusion, Knowledge Transfer, 

Cross-domain Fault Diagnosis 

 

1. Introduction 

Rolling bearings are essential to rotating machines, whose 

health condition has a significant impact on machine 

operation performance. As a kind of consumable component, 

bearings always work in varying environments so their 

conditions determine the sensing data in a complex manner 

[1]. Currently, it is still a challenging task to accurately detect 

and classify the bearing faults based on sensing data such as 

vibration signals. 

The vibration signal contains the running state information 

of the rolling bearing, which is widely used to diagnose the 

health state of the bearing. The bearing fault diagnosis based 

on machine learning extracts the identification features 

reflecting the bearing fault from the vibration signal data in a 

data-driven way, and obtains the prediction label of the 

bearing fault type through the classifier. Fault diagnosis can 

be supported by learning algorithms such as shallow learning 

support vector machine (SVM) [2], k-nearest neighbor (KNN) 

[3], logical regression (LR) [4], and can also be implemented 
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with the help of deep confidence network [5] and 

convolution network [5] in deep learning. This learning 

based fault diagnosis idea uses the supervised learning 

paradigm, trains the fault diagnosis model with the vibration 

signal data with the fault type label, and then sends the 

vibration signal to be identified to the trained model for fault 

type prediction. 

Most of the existing fault diagnosis methods assume that the 

vibration signal data in the training set and the test set come 

from the same distribution. However, due to factors such as 

cross unit, variable working conditions, and multiple 

measuring points, the vibration signals in the source domain 

and the vibration signals in the target domain have different 

data distribution characteristics, which is difficult to be 

established in the actual application scenario. This distribution 

difference between training and test samples will significantly 

reduce the diagnostic accuracy of traditional methods [6]. 

To solve the above problems, domain adaptive learning 

is used to migrate the fault diagnosis knowledge of the 

source domain to the target domain to obtain good cross 

domain generalization performance. The work in this field 

includes the method of TrAdaBoost [7] Based on 

case-based learning, the method of SSTCA [8] Based on 

kernel function transfer component analysis, the method of 

SSTCA-SVM based on feature transfer [9], and the 

improved LSSVM method using recursive quantitative 

analysis [10]. The basic principle of these methods is to 

seek the consistent data distribution between the source 

domain and the target domain in the feature stage, reduce 

the interference of domain differences on fault feature 

identification, and thus enhance the robustness of fault 

diagnosis algorithms to changes in data domains with 

different distributions. 

In addition to the single source domain migration task, 

there are also migration tasks from multiple source domains 

to target domains in practical applications, such as 

predicting the bearing health state represented by the 

vibration signal in the new equipment according to the 

bearing vibration signal of multiple existing types of 

equipment. The difficulty of this task is that the source 

domain and the target domain have different data 

distributions, and there are also data distribution differences 

among multiple source domains. If the domain adaptive 

method of a single source domain is simply extended, it will 

be difficult to obtain satisfactory diagnosis results [6]. 

Recently, literature [11] proposed a multi-source domain 

migration method based on the mean subspace of the 

Glassman manifold. Its main idea is to extract the common 

features of multiple source domains by feature fusion and 

migrate them to the target domain. 

From the perspective of fault diagnosis result fusion, this 

paper designs a weighted fusion strategy based on domain 

distribution similarity and proposes a multi-source domain 

migration bearing fault diagnosis method for complex working 

conditions. The method is divided into two steps: firstly, the 

local Fisher discriminant analysis is used to obtain the 

discriminant feature subspace of each source domain, and in 

this feature space, the label samples are used to train the 

support vector machine classifier to realize the bearing fault 

classification of the specific source domain. Then, calculate the 

maximum mean discrepancy (MMD) [12] between the target 

domain and all source domains as a measure of the distribution 

difference between the source domain and the target domain, 

and convert it into the weight of the source domain diagnosis 

result in the final diagnosis result. This method deals with the 

problem of multi-source domain migration from the level of 

fault classification and reduces the risk of negative migration 

by considering the difference in domain distribution. The 

simulation results on CWRU bearing vibration database show 

that the proposed method can effectively improve the 

performance of bearing fault diagnosis under the condition of 

multi-source domain migration. 

2. Related Work 

In order to overcome the influence of data distribution 

differences on the generalization performance of the model, 

single source domain adaptation methods have been 

continuously proposed to improve the domain 

generalization ability of the fault diagnosis model. Pan et al. 

[8] proposed a kernel function-based transfer component 

analysis method SSTCA, which reduces the data 

distribution difference between the source domain and the 

target domain samples in the feature space. Shen et al. [14] 

applied the representative case-based learning method 

TrAdaBoost to improve the diagnostic performance of 

rolling bearing under different working conditions. After the 

feature-based transfer strategy, the combination of deep 

learning and transfer learning is used for mechanical fault 

diagnosis. On this basis, Yan et al. [13] proposed a 

multi-sensor data fault diagnosis algorithm based on the 

K-nearest neighbor classification method based on the 

temporal and spatial relationship between signals. Sun et al. 

[15] proposed a depth migration method based on a sparse 

self-encoder. Zhang et al. [16] proposed a neural network 

bearing fault diagnosis method based on model parameter 

migration. 

In practical application, the labeled training samples may 

come from multiple source domains. In this case, the 

diagnostic knowledge of multiple source domains needs to be 

migrated to the target domain. R. Gopalan et al. [17] 

proposed a subspace based domain adaptation method and B. 

Gong et al. [18] proposed a domain adaptation method based 

on domain interpolation, which can deal with the migration 

of single source domain and multi-source domain at the same 

time. Zheng et al. [11] proposed using multiple source 

domains to construct the mean subspace on the Grassmann 

manifold and then using the manifold learning model to 

obtain the mean subspace to diagnose the target domain. 

Yang et al. [19] proposed a convolution neural network 

model for multi-source vibration signals to deal with the 

problem of off-condition fault diagnosis. 

Compared with the existing work that performs 

multi-source domain fusion at the feature level, this paper 
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proposes a new multi-source domain fusion strategy from the 

level of diagnosis results, that is, the weight is calculated 

according to the distribution similarity between each source 

domain and the target domain, and the weighted average is 

calculated. The diagnostic results of multiple source domain 

models on target domain samples are fused into the final fault 

type identification result. 

3. Multi-source Domain Transfer 

Bearing Fault Diagnosis 

3.1. Problem Formalization 

Given a set of K source domain vibration dataset{ }
1

,
kn

k k

i i
i
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3.2. Algorithm 

The key to multi-source domain migration lies in how 

to effectively extract the discriminative information from 

each source domain and effectively transfer it to the 

target domain. Based on this, this paper proposes a 

multi-source domain bearing fault diagnosis algorithm as 

shown in Figure 1. The algorithm is divided into two 

main steps: (1) learning a source domain-dependent fault 

diagnosis model (2) fusion of diagnosis results based on 

domain similarity. 

3.2.1. Supervised Learning Based Source Domain Fault 

Classification 

As shown by Figure 1, we use local Fisher discriminant 

analysis for each source domain to obtain a feature subspace 

that portrays the fault identification information of that 

source domain. An SVM fault diagnosis model is then trained 

in this feature space using labeled samples to achieve bearing 

fault classification. 

LFDA mines the class structure by maximizing the 

inter-class scatter and minimizing the intra-class scatter 

within the local neighborhood of the sample, and seeks a 

feature space that preserves the local discriminative 

properties of the training samples. 

 

Figure 1. Framework of the proposed diagnostic method. 

The optimal feature subspace U of LFDA is provided 

by the optimal solution to the following optimization 

problem 
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where kn  is the number of kth class of training samples and 

ijA  denotes the degree of association between samples, 

defined as 

2

,

i j

ji

i j

x x

A e
σ σ

−

=
                 (5) 

The ,|| ||i i i kx xσ = − in Equation (5) is the distance between 

ix  and its k th local nearest neighbour sample. LFDA to 

obtain K optimal locally discriminated subspaces 1, , kU U…  

as the feature subspace for the corresponding K source 

domains, the vibration signal samples from each of the K

source domains will be projected into the corresponding 

feature subspace to obtain the corresponding source domain 

features, i.e. 

Tz U x=                   (6) 

In each source domain, we learned a support vector 

machine (SVM) as a classifier based on the vibration 

features. To achieve a non-linear classification, we first 

transform the vibration features into a renewable Hilbert 

space (RKHS) and then learn a linear support vector 

machine to obtain the following kernel function-based SVM 

classification model. 
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where ( )iK xx is the kernel function, and the RBF kernel 

function is used in this experiment.
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For the K source domain vibration datasets, we can train 

K LFDA feature subspaces 1, , KU U… and the corresponding

K SVM classifiers 1 2SVM ,SVM , ,SVMk… . Since these K

classification models will give K fault classification results 

for the target domain vibration signal
t
ix , we need to predict 

the fault type ŷt
i of the target vibration signal based on these

K fault diagnosis results. 

3.2.2. Diagnostic Fusion Based on Domain Similarity 

Due to the K source domains and the target domain are 

inconsistent in data distribution and have a certain correlation, 

the classification model of each source domain can predict 

the bearing fault type of the target domain vibration signal to 

a certain extent. 

In this paper, we use the idea of integrated learning to 

achieve fault type identification for multi-source domain 

migration by fusing the identification results of the target 

vibration signals derived from multiple fault diagnosis 

models at the resulting level. If the source domain is more 

similar to the target domain distribution, the source domain 

classification model is more suitable for the target domain 

fault diagnosis task. 

We utilize MMD to measure the distribution similarity 

between the target domain and the source domain,, defined as 

follows. F is a given set of functions, X  the distribution 

of the source domain is, the distribution of the target domain 

is Y  then we have 
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Based on the similarity of the domain data distribution, we 

define the importance weight of the source domain for the 

target domain as 
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The parameter ρ  is used to adjust the sensitivity of the 

weight β  to the MMD measure, and the function of the 

denominator is to make the β  value between [0, 1], and 

the sum is 1. It can be seen from formula (11) that if the 

MMD value of a source domain and the target domain is 

smaller, it means that the data distribution of the source 

domain is closer to the target domain distribution, and the 

learned classification model may have a relatively better 

diagnosis effect. The weight of the classification model 

obtained from the source domain in the fusion should be 

larger. 

Let 
� �1

, ,
k

t ty y…  be the fault type prediction label obtained 

by the target domain vibration signal tx  through K  source 

domain classification model, then the final fault type of tx  

is given by equation (12) 
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The method proposed in this paper is described in detail as 

shown in Algorithm. 
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Algorithm: Multi-Source Domain Shift-based Algorithm for Fusion of Classification Results. 

Input: K source domain vibration Datasets , target domain sample set . 

Output: Target domain sample set of predicted labels  

Start: 

For : 

Learning the  locally optimal discriminative feature space of the kth source domain based on  using equation (1) ; 

Using equation (7) to train the support vector machine  in ; 

End 

For : 

For : 

Use equation (6) to obtain the features of the target domain sample  in the kth source domain feature space; 

Using equation (7) to obtain the fault type prediction labels for the target domain in the source domains; 

End 

For : 

Use equation (10) to calculate the maximum mean discrepancy between the th source domain  and the target domain ; 

The input  is calculated by equation (11) to obtain the weight  of the th SVM diagnostic model; 

End 

The obtained weights ,  into equation (12) to obtain the result for the current sample ; 

End 

4. Experiment 

4.1. Database 

In this paper, a multi-source domain migration bearing fault diagnosis experiment based on the Case Western Reserve 

University rolling bearing database CWRU [20] is conducted to test the effectiveness of the proposed method on cross-domain 

bearing fault diagnosis. 

 

Figure 2. Bearing test bench and its working schematic. 

As shown in Figure 2 above, the test stand consists of a 2 hp 

motor (left), a torque transducer/encoder (center), a 

dynamometer (right), and control electronics (not shown). The 

test bearings support the motor shaft. Single point faults were 

introduced to the test bearings using electro-discharge 

machining. The test bearing was used to support the motor 

shaft and three single points of fault were introduced into the 

test bearing using EDM, namely outer ring fault, inner ring 

fault and ball fault. Vibration data was collected using 

accelerometers, which were placed at twelve o'clock on the 

drive and fan ends of the motor housing. 

The sampling frequency at the drive end was 12KHz and 

the fan end used a frequency of 48KHz. vibration signals were 

collected at four motor load conditions of 0, 1, 2, and 3 hp. 

Vibration data was collected using accelerometers, which 

were attached to the housing with magnetic bases. 

Accelerometers were placed at the 12 o’clock position at both 

the drive end and the fan end of the motor housing. 

As shown in Table 1, according to the vibration signal 

sampling point and motor load, the vibration data are divided 

into eight data fields, which are noted as A, B, C, D, E, F, G, 

and H. Among them, A, B, C, and D come from the data of the 

drive end, and E, F, G, and H come from the data of the fan 

end. 
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Table 1. Bearing parameters for the eight vibration data fields. 

Source Domain bearing specifications Operating environment Location of Accelerometer 

A/B/C/D SKF 6205-2RS 0/1/2/3 hp drive end 

E/F/G/H SKF 6203-2RS 0/1/2/3hp fan end 

 

Table 2. Multi-source domain migration troubleshooting tasks. 

Task domain target Task domain target 

MT-A E/F/G/H A MT-E A/B/C/D E 

MT-B E/F/G/H B MT-F A/B/C/D F 

MT-C E/F/G/H C MT-G A/B/C/D G 

MT-D E/F/G/H D MT-H A/B/C/D H 

By selecting one of the eight data domains as the target 

domain and the remaining data domains at different ends as the 

source domains, we constructed eight multi-source domain 

migration fault diagnosis tasks, and the specific information of 

the data domains and fault diagnosis tasks are shown in Table 2. 

We use the data processing method of the literature [11], where 

each vibration data sample is a 4000-dimensional vector from 

four bearing condition categories, i.e., Normal, outer ring fault, 

inner ring fault, and ball fault. The extraction process of this 

first-level feature is referred to in the literature [11], and the 

algorithm in this paper takes this first-level feature as input and 

obtains the fault condition prediction label of the target bearing 

after a multi-source domain adaptive model. 

 

Figure 3. Example of the vibration signal used in this paper. 

The number of samples for each bearing condition is 270, 

totaling 1080 vibration data samples, thus forming the 

experimental setup I. To test the fault diagnosis performance 

under the low-dimensional vibration data samples, we 

randomly intercepted the original vibration data with 

continuous 1200-dimensional signals and repeated 5 times to 

calculate the average accuracy and standard deviation, thus 

forming the experimental setup II. Figure 3 shows some of the 

vibration signal data samples of the experimental setup. For a 

fair comparison, we extracted 23-dimensional dimensionless 

features and 10-dimensional features about the vibration 

spectrum and envelope spectrum from the D-dimensional 

(D=4000 in the setup I and D=1200 in setup II) original 

vibration signals according to the data processing scheme of 

the literature [11], and combined them into 33-dimensional 

features as the input data of the algorithm. 

4.2. Comparison Methods 

To verify the effectiveness of the proposed method in this 

paper, we conduct comparative fault diagnosis experiments 

under setting I and setting II. The reference methods include. 

1) SVM (Support Vector Machine) [2]: all source domain 

samples are used in this experiment to train the SVM 

model based on Gaussian kernel function, and then 

predict the state labels of the target domain samples. 

2) KNN (k-nearest neighbor classifier) [3]: the state labels 

of the target domain samples are predicted based on the 

nearest neighbors of the target domain samples among 

all source domain samples, where the similarity is based 

on the Euclidean distance and the optimal k value is used 

with the setting of the literature [11]. 

3) LR (logistic regression): the potential relationship 

between the vibration signal and the bearing state is 

fitted using all labeled source domain samples. 

4) SSTCA (semi-supervised migration principal component 

analysis) [8]: the data are mapped to a high-dimensional 

regenerative kernel Hilbert space, and then the distribution 

distance between the source and target domains is reduced 

with the help of kernel functions to reduce the distribution 

differences in the data domains. In this paper, SSTCA 

aggregates all source domain samples into a single source 

domain for the prediction of the target domain. 

5) TrAdaBoost [14]: the weak classifier set is optimized 

iteratively to become a strong classifier that is robust to 

domain migration. In this paper, TrAdaBoost aggregates 

all source domains into a single source domain for single 
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source domain migration. 

6) SGF [17]: solves the linear feature subspace of the 

source and target domains and performs feature space 

interpolation to achieve asymptotic alignment of the 

distribution from the source domain to the target domain. 

7) GFK [18]: using kernel functions on Grassmannian 

manifolds to achieve infinite subspace interpolation 

from the source domain eigensubspace to the target 

domain eigensubspace. In this paper, GFK solves the 

multi-source domain migration problem by selecting the 

source domain with the most similar distribution to the 

target domain from multiple source domains with a 

single source domain migration method. 

8) MSDGIF [11]: the local discriminative subspaces in each 

source domain are modeled as Grassmannian manifolds, 

and the multi-source domain migration problem is 

transformed into a single-source domain migration 

problem by finding the optimal average subspace to 

obtain a uniform portrayal of multiple source domains. 

4.3. Comparison Methods 

The multi-source domain migration fault diagnosis results for 

the experimental setup I am shown in Table 3. We observe that 

traditional classification models that do not consider domain 

migration, such as SVM, KNN, and LR have difficulty in 

maintaining the validity of the classification models on the 

target domain data because they do not consider the distribution 

differences between the source and target domains. 

The accuracy of single-source domain migration methods, 

such as TrAdaBoost (combine) and SSTCA (combine), is 

below 70% when dealing with large spans migration tasks, 

such as MT-E, MT-F, MT-G, and MT-H, because these two 

methods ignore the distribution differences between source 

domains and treat all source domain training samples as the 

same distribution. It is worth noting that among the traditional 

classification models, KNN diagnostic performance 

outperforms other non-migration methods and some domain 

migration methods, probably because KNN relies on the local 

structure of the data for classification, which is less affected 

by the overall distribution changes of the data. 

SGF does not consider labeling information in the subspace 

acquisition and interpolation process, which makes it difficult 

to retain diagnostic discrimination information during the 

transition from source to target domains. GFK selects the 

optimal source domain from multiple source domains to 

achieve domain migration, which inevitably loses diagnostic 

discrimination information from other source domains. 

When the source and target domains have large differences in 

distribution, such as MT -F and MT-G, the strategy of using 

only a single source domain makes the fault diagnosis accuracy 

of GFK low. MSDGIFI considers the diagnostic discriminative 

information of each source domain and transforms the 

multi-source domain migration into a single-source domain 

migration problem using feature fusion. Therefore, MSDGIFI 

achieves higher diagnostic accuracy than the above methods. 

As for the method proposed in this paper, Table 3 shows that the 

highest accuracy is achieved in 7 out of 8 multi-source domain 

migration diagnosis tasks, while the average diagnosis accuracy 

is improved by 4.76% compared with MSDGIFI. 

This is attributed to the fact that the adopted automatic 

source domain weight determination strategy can effectively 

use the diagnostic knowledge from multiple source domains 

and migrate it to the target domain based on the similarity of 

the distribution between the target and source domains. 

The results of multi-source migration fault diagnosis under 

Experimental Setup II are shown in Table 4, and we observe 

that the diagnosis results of each method in Table 4 have 

similar characteristics and trends as those in Table 3. 

Table 3. Results of the multi-source domain migration troubleshooting task under experimental setup I. 

method MT-A MT-B MT-C MT-D MT-E MT-F MT-G MT-H Accuracy 

SVM 83.15 82.22 78.70 82.13 57.41 52.22 51.11 60.28 68.40 

KNN 78.94 82.41 79.26 82.41 79.44 64.91 74.63 77.04 77.38 

LR 83.33 82.04 76.57 82.13 58.06 50.09 50.46 50.56 66.66 

SSTCA 86.57 83.06 80.19 83.33 69.63 44.44 48.80 50.28 68.29 

TrAdaboost 76.94 79.72 77.13 74.44 52.96 50.00 50.28 50.74 64.03 

SGF 69.35 69.91 71.11 67.31 65.65 55.09 56.48 55.09 63.75 

GFK 85.19 79.44 71.76 72.13 65.37 36.48 42.50 58.43 63.91 

MSDGIFI 83.33 83.33 83.33 83.33 89.81 81.57 77.41 73.89 82.00 

Ours 89.17 85.65 88.33 85.93 84.81 86.02 86.48 87.69 86.76 

Table 4. Results of the multi-source domain migration troubleshooting task under experimental setup II. 

method MT-A MT-B MT-C MT-D MT-E MT-F MT-G MT-H Accuracy 

SVM 73.73±1.28 74.96±1.25 72.45±1.21 70.62±0.47 62.71±1.08 56.20±1.32 56.37±0.66 60.26±0.50 65.92±7.49 

KNN 73.98±1.47 77.47±0.77 73.98±1.13 72.54±0.43 79.75±1.21 59.65±1.35 68.75±1.12 68.37±2.42 71.81±6.05 

LR 81.44±0.50 81.44±1.56 80.76±2.47 77.52±2.11 65.94±1.18 60.66±3.91 57.69±3.17 56.09±0.52 55.73±10.8 

SSTCA 79.62±1.18 81.64±1.47 75.24±4.53 80.94±1.41 68.25±1.72 46.79±6.50 51.45±1.21 53.01±1.91 66.56±13.8 

TrAda* 81.79±0.09 82.42±0.01 81.90±2.38 73.59±1.77 64.30±3.26 54.26±3.76 50.47±5.14 55.11±2.23 67.98±13.3 

SGF 71.53±2.04 72.05±2.11 70.88±1.78 67.57±1.19 67.48±2.19 54.01±6.36 56.53±1.01 57.25±1.37 64.66±7.57 

GFK 81.03±3.56 75.40±2.64 72.58±2.85 68.37±2.74 76.75±10.7 47.50±9.44 49.32±7.49 54.87±6.31 65.73±14.0 

MSDGIFI 82.15±1.09 82.81±1.03 81.87±1.24 81.39±1.86 85.76±2.12 77.12±5.31 74.09±4.54 77.05±4.89 80.28±4.86 

Ours 86.14±2.10 87.13±2.53 85.92±1.88 83.89±1.88 83.85±2.67 79.66±2.34 76.66±1.46 79.72±3.64 82.87±4.15 

*TrAda stands for TrAdaBoost. 
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Specifically, the multi-source migration method is more 

accurate and stable than the non-migration and single-source 

migration methods in terms of diagnostic accuracy and 

diagnostic stability. 

It is worth noting that the proposed method in this paper still 

achieves the highest diagnostic accuracy in most tasks under 

the experimental setup II, and its average diagnostic accuracy 

improves by 2.59% compared with MSDGIFI, indicating that 

this method has stronger fault diagnosis capability and 

diagnostic stability than MSDGIFI. 

The results in Table 1 and Table 2 show that it is difficult to 

achieve effective migration from multiple source domains to 

the target domain by simply combining all source domains 

into one source domain or by directly averaging the diagnosis 

results of multiple source domains. Meanwhile, comparing the 

method in this paper and MSDGIFI, it can be found that 

diagnostic decision-level fusion and feature-level fusion are 

comparable or even better in multi-source domain migration, 

which proves that multi-source domain migration is based on 

diagnostic result fusion has a greater potential for handling 

complex scenario bearing fault diagnosis. 

4.4. Analysis of Algorithm Parameters 

The value of the parameter ρ in Equation (11) of the method 

in this paper has a direct impact on the weight of the fusion of 

multi-source domain results. In order to study the dependence 

of the method in this paper on the parameter ρ, we set different 

values of ρ under experimental settings I and II and observe 

the changes of the corresponding diagnostic accuracy, and the 

results are shown in Figure 4(a) and Figure 4(b), respectively. 

As can be seen from Figure 4, the method achieves high 

diagnostic accuracy and stable recognition performance over a 

wide range of values of ρ. In particular, when the value is 

between 0.1 and 0.05, the method achieves the highest 

diagnostic accuracy in several tasks. 

  
                      (a) Experimental setup I                                           (b) Experimental setup II 

Figure 4. Effect of different ρ values on the diagnostic accuracy under two settings. 

When the value of ρ is less than 0.005, the recognition 

effect of this method drops abruptly because the value of ρ is 

too small to make the value of the negative exponential 

function in Eq. (11) tend to 0. The calculation of Eq. (11) will 

face numerical problems, making the calculated source 

domain weight values appear data anomalies and leading to 

the fault of the fusion strategy. The above results also prove 

the rationality of the fusion strategy of diagnostic results 

proposed in this paper. 

4.5. Diagnostic Fusion Mechanism Validation 

To verify that the fusion of diagnostic results strategy 

proposed in this paper can extract the relative importance of 

each source domain to the target domain fault diagnosis, we 

use the MMD metric to examine the similarity of each source 

domain to the target domain and its corresponding single 

source domain migration fault diagnosis accuracy. At the same 

time, we calculate the corresponding fusion weights of each 

source domain and the corresponding fault diagnosis accuracy 

of our fusion strategy. The experimental results are shown in 

Tables 5 and 6. 

The results in Table 5 show that the diagnostic accuracy of 

single source domain migration is approximately proportional 

to the MMD values of the source and target domains, 

demonstrating that the closer the source domain is to the target 

domain, the better the migration effect is. It is worth noting 

that according to the fusion strategy of diagnostic results in 

this paper, the weights taken for each source domain are also 

proportional to the corresponding MMD values, indicating 

that the method in this paper does automatically mine the 

relative importance of the source domain for the diagnostic 

task of the target domain. 

The results in Table 5 also show that the multi-source 

domain fusion approach in this paper achieves higher 

diagnostic accuracy than all single-source domain migrations, 
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demonstrating that the approach in this paper is indeed 

effective in migrating diagnostic knowledge from multiple 

source domains to the target domain. Similar conclusions can 

be drawn from the results in Table 6. 

Table 5. MMD of MT-B with ρ=0.010 and its accuracy relationship in the case 

of experimental setup I. 

Setting E→B F→B G→B H→B MT-B 

MMD 0.1550 0.1544 0.1547 0.2688 / 

weight 0.2680 0.3513 0.3806 0.0000 / 

accuracy 81.1111 81.6667 84.1667 74.6296 85.6557 

Table 6. MMD and its accuracy relationship for MT-B with ρ=100 in case of 

experimental setup I. 

setting E→B F→B G→B H→B MT-B 

MMD 0.1550 0.1544 0.1547 0.2688 / 

weight 0.2544 0.2545 0.2545 0.2366 / 

accuracy 81.1111 81.6667 84.1667 74.6296 81.6667 

The results in Table 5 also show that the multi-source 

domain fusion method in this paper achieves higher diagnostic 

accuracy than all single-source domain migration, proving 

that the method in this paper is indeed effective in migrating 

diagnostic knowledge from multiple source domains to the 

target domain. Similar conclusions can be drawn from the 

results in Table 6. 

Comparing Table 5 and Table 6, it can be found that when 

the value of ρ is taken too large, although the numerical 

calculation problem is avoided, the important difference of 

each source domain to the target domain is ignored. At this 

time, the adaptive diagnosis result fusion strategy proposed in 

this paper degenerates to a direct average of the diagnosis 

results of each source domain. 

Table 7. MMD and its accuracy relationship for MT-F with ρ=0.01 in the case 

of experimental setup II. 

setting A→F B→F C→F D→F MT-F 

MMD 0.4966 0.5112 0.4720 0.5028 / 

weight 0.2329 0.1742 0.3990 0.1938 / 

accuracy 80.5556 78.7037 81.0185 80.3704 82.3154 

Table 8. MMD of MT-F with ρ = 100 and its accuracy relationship in the 

experimental setup II case. 

setting A→F B→F C→F D→F MT-F 

MMD 0.4966 0.5112 0.4720 0.5028 / 

weight 0.2499 0.2500 0.2500 0.2500 / 

accuracy 80.5556 78.7037 81.0185 80.3704 79.722 

The experimental results under Experimental Setup II are 

shown in Tables 7 and 8, from which we observe that (1) 

determining the weights of each source domain in the fusion 

process of diagnostic results based on the distribution 

similarity between the source and target domains is beneficial 

for multi-source migration, and the proposed method in this 

paper outperforms the best performance of single-source 

migration; (2) taking too large a value of the parameter ρ will 

degrade the adaptive fusion strategy in this paper to direct 

averaging and weaken the multi-source migration capability 

of the method in this paper. 

5. Conclusion 

In conclusion, the main contributions of this paper can be 

summarized in two terms. 1) This paper proposes an adaptive 

multi-source domain fault diagnosis method based on the 

fusion of classification results at the level of classification, 

which effectively utilizes multiple source domains and 

improves the correct rate of fault diagnosis; and 2) In order to 

reduce the influence of negative migration on the results of 

multi-source domain fault diagnosis we introduce a model 

determined by similarity score and sensitivity parameters 

Weights. By using local discriminant analysis and Maximum 

Mean Discrepancy to calculate the similarity score between 

the source domain and the target domain, the similarity score 

is used to calculate the weight of the source domain model in 

multi-source domain fault diagnosis, which reduces the risk of 

negative migration in the multi-source domain context; in 

addition, the selection of sensitivity parameters for the method 

is investigated in depth and an effective interval on how to set 

the parameters is proposed. Finally, the validity of the 

proposed method is verified by a bearing data set provided by 

Case Western Reserve University for bearing fault diagnosis. 

We will further explore the fusion of feature levels through 

neural networks using similarity scores in the future work. 
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