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Abstract: Multi-Agent Systems (MASs) suffer from low immunity against burst of arrival requests which can result in a 
permanent outage of such systems. This factor limits the suitability of MASs for control of real-world manufacturing systems 
with strict requirements on performance and reliability. This manuscript explains the origins of the performance degradation of 
MASs based on Contract-Net Protocol and proposes a method that protects the systems against the destructive effect of 
temporal overloads. The proposed method continuously observes the communication among agents and analyzes it in order to 
identify possible saturation of a system resource. If triggering a new action saturates a system resource, the carrying out of the 
action will be postponed. The impacts of the method are demonstrated on a test-bed consisted of six mini-computers Raspberry 
Pi. It shows that the proposed method avoids overloading of the system and thus guarantees a specific system throughput 
effectively and efficiently. 
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1. Introduction 

Multi-Agents Systems (MASs) have provided a new 
abstraction paradigm for designing distributed and flexible 
industrial control systems emphasizing attributes such as 
autonomy, robustness, survivability, adaptation, and 
reconfiguration [1][1][3]. Agents find optimal solutions at 
runtime, which eliminates the need for preparing control 
strategies for all possible scenarios in advance. 

A shift of MASs from laboratory research to real world 
deployment is slower than expected. This is caused by 
multiple factors; one of them is a group of 
performance-related problems of MASs caused by overload 
of computational resources. This causes hardly predictable 
delays or even prevents the MASs from converge to a 
solution due to expired communication timeouts. This 
manuscript proposes a method that protects the MASs based 
on Contract-Net Protocol (CNP) against overloading caused 
by bursts of requests. Providing such a protection is of the 
highest importance because even a temporal burst of requests 

can transfer the MAS to such a state from which the system 
is not able to recover. Many concurrent actions overload 
resources and prolong the execution times. This may lead to 
the expiration of the negotiation timeouts. Then, agents 
usually invoke new attempts to cooperate, but it repetitively 
ends up with not passing the timeouts due to the reoccurring 
overloads. This forms a never ending loop, from which the 
agents cannot escape. In practice, this situation frequently 
occurs in the system setup mode, when the initial state has to 
be reflected in agent actions, as well as in the operation mode, 
when external events come with excessive frequency. 

In general, these problems are caused by saturation of 
computational resources. Overloaded resources decrease the 
agent responsiveness which might end up with exceeding the 
communication timeouts. This fact closely corresponds with 
another problem of MASs: it is difficult to find the optimal 
setup of communication timeouts, which the agents use to 
bound their waiting for responses. Too long timeouts 
decrease the performance by waiting for messages that never 
come (e.g. from a broken agent). On the other hand, the 
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communication timeouts cannot be too short either, because 
it might disallow the system to converge to the best solution 
as have been many times experienced during the work on the 
Chilled Water System (CWS) application [4]. Moreover, the 
optimal setup is specific for each system configuration 
(including number of agents, computational performance of 
used hardware, and system load). Thus, any hardware or 
software change of the well-tuned system has to be followed 
by a new timeout setup. 

This manuscript proposes a method which replaces the fine 
tuning of communication timeouts by a congestion control 
mechanism that prevents the system from entering 
overloaded operational regimes. The method breaks the 
relation between timeout settings and the current system load. 
This is achieved by the observation of the agent 
communication and its analysis which provides information 
how each initial request loads each of the system resources 
(e.g. a CPU). These parameters form a Loading matrix, 
which is used as input for the Operational analysis. It is an 
analytical method that identifies among all resources 
potential system bottlenecks. The saturation load in terms of 
the frequency of arrival requests is then identified for the 
bottleneck candidates. 

The low computational complexity makes this method 
applicable at runtime, where it extends capabilities of the 
regular Directory Facilitator (DF). Consequently, the 
extended DF can spread the possible burst of request into a 
longer time period, in order to prevent any part of the system 
against saturation. The method is directly applicable to 
MASs utilizing the Contract-Net Protocol (CNP) [5] or its 
extension Plan Commit Execute (PCE) protocol [6], because 
the cooperation in such systems forms chains, where 
initiators can be identified and then the successors can be 
traced in order to estimate the overall impact of the initial 
request. The method is further limited only to such systems 
that use DFs for starting cooperation between agents. 

Utilization of the method is demonstrated on a segment of 
CWS containing one service agent (requests cold water), four 
valve agents (connect water piping sections), and one chiller 
agent (provides cold water). The experimental evaluation was 
done on the test-bed consisted of six minicomputers 
Raspberry Pi Model B (see Figure 1), which host Jade agents. 

 

Figure 1. Testbed containing six minicomputers Raspberry Pi Model B. 

2. Related Work 

This section introduces selected methods, approaches, and 
tools that increased the acceptance of MASs and distributed 
embedded systems by industrial enterprises. 

2.1. Methodologies for MASs 

A lot of attention in the area of the development of a 
methodology for holonic systems was paid within the research 
program for Intelligent Manufacturing Systems (IMS). Within 
its activities, two holonic architectures were developed – 
PROSA [7] and ADACOR [8]. Both introduce sets of 
guidelines to decompose manufacturing control functions into 
communities of autonomous and cooperative entities called 
holons. Recently, methods for validation of agent-based 
manufacturing systems have become investigated. 
ANEMONA [9] presents means for functional validation of 
multi-agent architectures in conformance with specific trade 
requirements. 

2.2. Model-Based Diagnostics 

MABLE [10] is a conventional imperative programming 
language which is extended by constructs from MASs. The 
agents designed in MABLE maintain their social knowledge 
using linear temporal belief-desire-intention logic. The major 
advantage of this approach is the ability to formally prove that 
any interaction of agents will not lead to a fault state. On the 
other hand, the fundamental disadvantage and perhaps the 
stopper for the wider spread of this technique is the limited set 
of constructs that an agent can use. In other words, the agent 
has to be designed in the way suitable for MABEL from the 
very beginning. 

2.3. Formal Time Analysis for Embedded System 

The domain of embedded systems is facing a dramatic 
increase of the network complexity. For example, modern 
automotive control systems contain more than fifty electronic 
control units (ECUs) that are produced by various suppliers 
[11]. The units are inter-connected via a communication 
network representing a shared resource. It is necessary to 
assure that a potential conflict in usage of the shared resource 
would not lead to a dangerous situation. It means, for 
example, the function of the Anti-lock braking system (ABS) 
in a car must not be harmed by increased communication of 
other systems. Similar problem and requirements come from 
the aircraft industry and also from the designers of 
multi-processor systems [12]. In general, networked or 
distributed systems can be characterized by observing a high 
amount of data flows within the network. To address the 
challenges posed by the increased network complexity the 
Network Calculus [13] and its extension Realtime calculus 
[14] were introduced. Network Calculus enables evaluation 
of timing properties of data flows in communication 
networks. Realtime Calculus extends this concept to make it 
suitable for real-time embedded systems. The basic idea 
behind these two approaches is to substitute individual events 
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by data flows called event streams. The validation problem is 
then transformed into the examination of flows, which can be 
solved by efficient methods. 

2.4. Qualitative and Quantitative Analysis of Industrial 

Multi-Agent Systems 

The investigation of methods for validation of MASs was 
addressed by the EU FP7 research project GRACE [15]. One 
of the project outputs is the methodology for qualitative 
analysis based on Petri net modeling notation. The behavior 
of each agent is represented as a single Petri net which can be 
verified by the regular methods to find out whether the model 
is bounded (the resource can only execute one operation at 
time), reversible (the agent can reinitiate by itself) or out of 
deadlocks (the agent can make at any state an action). The 
extension of these models with concept of time provides 
methods for quantitative analysis of multi-agent systems. The 
transitions are extended with the time parameters to capture 
the times of transition activations. Such a simulation shows 
the evolution of the tokens over places and over the time. The 
complete information about the progress of the agent 
behavior is summarized with a Gantt chart. Unfortunately, 
the development of the Petri net models is a time-consuming 
process, which requires specialized skills. 

2.5. Supportive Tools for Development of Multi-Agent 

Systems 

Debugging and tuning of MASs is a challenging process 
that cannot be tackled by methods used for monolithic 
applications such as debuggers and profilers. Particularly, the 
multi-agent applications cannot be debugged step by step due 
to the asynchronous communication between components. 
Instead, logging mechanisms are used to capture the 
time-lines of system events that are afterwards analyzed by 
the programmer. Technically, a log is captured by a 
specialized meta-agent that is usually called sniffer. A basic 
sniffer is part of the Jade platform. Advanced features to 
visualize the workflows provides Java Sniffer [16]. 

3. Scheduling of Operations in MASs 

The prevention of MASs from entering overloaded 
operational regimes is based on observation of 
communication among agents. The fundamental part of the 
method is the automated identification of loading matrices 
from communication logs. In more details, the entire method 
consists of six steps. First, the communication produced by a 
MAS is logged and divided into groups according to the 
initial events, i.e., every group consists of messages that are 
successors of the same initial event. Second, the messages in 
each group are causally ordered (from initiators to 
participants) into tree structures. Such trees are called 
workflows and the initial events are their roots. Third, the 
workflows are analyzed to identify the loading matrix. Fourth, 
operational analysis is utilized in order to identify the 
bottleneck candidates. Fifth, the DF is extended by 

scheduling features which prevent the system from triggering 
too many activities in parallel. Sixth, the comparison of the 
original and the improved MASs are presented to illustrate 
the contribution of the method. 

3.1. Communication Analysis 

Many MAS platforms including JADE and Autonomous 
Cooperative System (ACS) support logging (sniffing) 
messages sent among agents. The proposed method builds on 
this feature and develops a new sniffer that observes the 
overall agent communication in a similar way as other 
sniffers, but it adds the time analyzes of the logged messages, 
whereas regular sniffers focus mainly on the visualization of 
the communication. The new sniffer analysis causal relations 
and timing of messages in order to obtain workflows, i.e., 
knowledge what are the initial messages and what are their 
successors. 

The global behavior of MASs emerges from local 
interactions between components. These interactions have a 
causality defined by roles of communicating agents: 
initiator → participant. Because the participants can also 
become to be initiators to re-distribute the received requests, 
the interactions form cooperation chains called workflows. It 
is necessary to identify these workflows to understand the 
impact of the beginning request on the whole system. These 
initial events are called Primary actions because they are 
triggered by internal events in agents. They drive the agent's 
proactivity as they cause that the agents initiate new 
conversations as reactions to perceptions done inside of the 
agents. A typical example from the industrial domain is an 
agent that receives notifications from the low-level control 
about a change of a data tag value. It causes a reaction of the 
agent in terms of creating a new conversation with other 
agents. The Secondary actions are reactions on received 
messages coming from either Primary or another Secondary 
action. 

Messages sent among agents are composed according to 
the FIPA ACL specification [17]. This specification defines a 
set of mandatory parameters that each message contains. 
These parameters are used to identify who the sender is and 
which conversation the message belongs to. Such an 
identification is necessary to enable agents to work on 
multiple tasks in parallel without mixing up messages 
coming from different conversations. To enable the backward 
communication traceability, agents use parameter “Reply 
With” to add additional pieces of information into messages. 
The content of this field is composed iteratively by all agents 
participating on the particular negotiation. The original seed 
of the parameter creates the initiator of the communication 
and stores in it its name and the number of the conversation, 
in which this agent takes part (e.g.: svc1@100:0). The next 
participant extends the content of this field by the “~” 
character and its own identifier (e.g. 
svc1@100:0~acp@100:310) and so on. This annotation is 
sufficient for the reconstruction of the workflows. 



108 Petr Kadera et al.:  Performance Models Preventing Multi-Agent Systems from Overloading Computational Resources 
 

 

Figure 2. Example of a workflow that illustrates a piece of negotiation in 

CWS application. The bubble labels highlight parts of the messages sent 

between agents. 

In general, a communication log consists of multiple 
workflows. The first step of the communication analysis is 
the organization of the messages into individual workflows. 
Using terminology of the graph theory, a workflow is a tree 
(see Figure 2) and the whole communication is a forest of 
such trees. The root of each workflow is the initiator of the 
particular communication. Intermediate nodes represent 
agents that are not capable to satisfy the received request on 
their own, but are able to inquire other agents. Finally, 
workflow leafs represent agents, who (i) can fully satisfy the 
request or (ii) cannot and even are not able to involve into the 
negotiation process any other participants. 

The next step is the computation of the loading matrix. It is 
a table (see Figure 3) containing information how each initial 
request (Customer class in terminology of performance 
models) Cr loads a resource (Job Center in terminology of 
performance models) Ji. The load is derived from time 
differences between input and output messages. 

 

Figure 3. Loading Matrix. 

The computation of a cell of the Loading Matrix is 
illustrated on a concrete example. First, the communication is 
captured by Sniffer. Second, the messages are organized into 
workflows. Third, the load is computed from the time 
differences. For example, the cell in the matrix corresponding 
to the column for customer “Request from SVC1@100” and 
the row representing resource which hosts agent “v1@100” 
contains value 0.172 (17:05:55.093 - 17:05:54.921), i.e., time 
in seconds representing the time distance between the input 
and output message. The matrix is constructed row by row 
and each row represents a workflow. If the workflow for a 
specific initial request is received again, to old value are 
overwritten by the new ones. Whenever the Loading Matrix 
is changed, the updated values are sent to the DF. 

3.2. The DF for Prevention against Overload 

The proposed method benefits from a DF overview of 
ongoing activities, because the DF enabled to start all of 

them. This is combined with the loading matrix 
communicated from the sniffer and serves as input for the 
Operational analysis in details described in the next 
paragraphs. 

The Operational analysis [18][19] based on operational 
laws is the most straightforward analytic technique for 
performance considerations. It outperforms other approaches 
in the speed, it is simple for implementation and does not 
require any specialized skills. On the other hand, this 
notation can be used only for systems with homogeneous 
workload, i.e. the behavior of system components (jobs, 
resources) is time invariant. Beside this, operational laws 
cannot describe any notion of synchronization or exclusive 
access. 

Utilization law: The utilization is equal to the product of 
the throughput and the mean service time. 

Because the method proposed in this paper uses only the 
utilization law, we will not introduce the other two 
operational laws (i.e., Little's law and Forced flow law) in 
detail. 

The operational analysis was selected due to its low 
computational complexity. The operational laws, as they 
were introduced in [18], are directly applicable only in 
single-class case, but the multi-class cases require extension 
of the notation to handle various load coming from various 
customer classes. This work adopts and further extends 
method introduced by Casale [20]. 

 

Figure 4. Graphical representation of a loading matrix meaning. 

The key idea of the proposed method is that all system 
resources should be prevented from entering a saturated 
operational mode, which decreases the throughput of the 
particular resource and consequently of the whole system. To 
achieve this, the loading matrix, respectively its graphical 
representation, is used. Figure 4 depicts graphical 
representation of a loading matrix of a system with two 
customer classes. Points J1, J2, J3, and J4 represent 
individual job centers (in this case CPUs hosting agents). 
Their x- resp. y-coordinate represents the load imposed by 
customer of class 1 resp. 2. It is worth noticing, that the 
non-bottleneck JCs can be of two types. The first are 
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dominated by another JC (e.g. J4 is dominated by J2) or they 
might be masked off by a combination of other centers (e.g. 
J3 is masked off by the combination of J1 and J2). The 
method constructs the convex hull around all job centers. The 
job centers placed on a facet of the hull are the first ones 
facing the danger of saturation, therefore it is sufficient to 
keep out of the saturation these ones to guarantee that no 
other JC becomes saturated. The formal definition of this 
statement and its proof can be found in [20]. 

The transformation to the λ-space, where λr denotes the 
arrival frequency of r-customer class, is needed for further 
analysis.  

λ={λ1,λ2,⋯,λr} is the vector of arrival frequencies of all 
customer classes. The transformation is based on the 
following equation:  

Ui(λ) = λr * Lir               (1) 

For non-saturated stations holds: 

Ui(λ) ≤ 1                    (2) 

where i iterates over the set of all bottleneck candidates as 
were identified in the previous step. 

The set of equations (2) defines the region, for which holds 
that none of the resources is saturated. 

3.3. Scheduling Extension of the DF 

 

Figure 5. Architecture of a MAS with Sniffer and Extended DF, which 

postpones the impracticable actions. 

Attention was paid to the interoperability of the designed 
method with existing systems. The final implementation 
comprehends extension of two meta-agents — Sniffer and 
DF (see Figure 5). The first one is an extension of the Java 
Sniffer, which logs the messages and analyzes them in order 
to derive the loading matrix L. The matrix is then 
communicated via the regular messaging channel to the DF. 
This meta-agent utilizes the matrix to detect, whether the 
series of requests arriving to the system causes saturation of 
any JC — in this case it is a computer hosting an agent. If the 
danger of saturation is detected, the request is postponed to 
match the maximum frequency under given conditions.  

The Sniffer's part contains the regular and freely available 

Java Sniffer, which is responsible for capturing the messages, 
and further the newly developed extension, which computes 
the load matrix from the timestamps of corresponding 
messages. Beside this, the extension communicates its 
observations to the DF. All components of this part are 
written in pure Java and use only common libraries. 

The DF's part extends the standard Jade's DF in three main 
parts. The first one is the register implemented as a HashMap, 
where keys are the request types and the values are 
timestamps denoting the time of the last occurrence of the 
request. A request type is a unique combination of an agent 
and the requested service. For instance, if agent “A1” 
requests service “cooling” then the request type is “A1cooling.” 
The second part is related to the computation of the convex 
hull. The computation itself is done in Matlab. The Matlab 
version R2014a provides function for computation of convex 
hull in n-dimensional space: 

The input L is the loading matrix (the number of rows is 
the number of JCs, columns refer to the dimension of the 
space) and the output K is a matrix[x,y] - x is number convex 
hull facets, y is the dimension. In other words, the first row 
of matrix K contains indices of points from L that demarcate 
the first facet. The bottleneck candidates are such points that 
appears among the facet members. Set of constraints for 
these possible bottlenecks is created according to the set of 
equations (2). 

When the DF is requested by an agent for a provider of a 
particular service, the current λ is computed as follows: 

For the currently received request — of n-th customer 
class, 

λi = 1/(tnow – tiL1), i = n              (3) 

λi = 1/(max(tnow – tiL1, tiL1 – tiL2)), i ≠n       (4) 

where tnow is the current time, tiL1 is the time, when the task i 
was triggered last time and tiL2 is the time, when the task i 
was triggered before the last occurrence. The procedure is 
illustrated in Figure 6. 

 

Figure 6. Computation of arrival frequencies. 

Afterwards, the satisfaction of all constrains is tested. If 
none of them is violated, the request is handled immediately. 
Otherwise, the DF repeats the test after a relaxation time T 
until all constrains are satisfied. 
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4. Experimental Evaluation 

The first experiment confirms that the behavior of the real 
distributed systems is coherent with the simulation results. 
Using the test bed, we set up system with six Jade agents 
representing a part of the CWS application. One agent 
represents a service (the agent asking for cooling water), one 
agent represents a chiller (the agent providing cooling water) 
and four valve agents (the agents interconnecting segments of 
the water-piping system). The cooperation schema is 
depicted in Figure 2. The initiator of the communication is 
the service agent svc1. It asks the DF for contacts to agents 
providing cooling water. The DF provides contact (i.e., an 
agent id used for addressing messages within the JADE 
platform) to the chiller acp. The chiller communicates with 
the valves (v1, v2, v3, and v4) in order to arrange the 
transport of the cooling water to the svc1.  

The plot (see Figure 7) depicts the relation between 
frequency of request entering the system (Input Frequency) 
and the frequency of finishing the jobs - system throughput. 
The measured characteristic confirms the existence of the 
throughput maximum. 

 

Figure 7. Throughput with One Customer Class. 

 

Figure 8. Passage Rate 

The positive impact of using the extended version of the 
DF is clearly shown in Figure 8. The points marked by 
crosses represents measurements done with the regular JADE 
system and it demonstrates that after crossing a certain 
frequency the amount of jobs passed by a certain deadline 

steeply decreases. On the other hand, the modified version of 
the DF regulates the frequency of the input jobs, which leads 
the preserving the passing rate at 100 %. 

The further experiments were focused on systems with 
more customer classes. We present the contribution of the 
proposed approach on a 2-customer system, i.e., on a system, 
where two types of customer requests occur. It was created 
by extending the previous 1-customer experiment by a new 
type of request, but still using the same test bed. The 
measurements go along with the previous results regarding 
the performance degradation, but on top of that also 
demonstrates the strong influence across input frequency of 
individual classes (see Figure 9 and Figure 10). 

 

Figure 9. Throughput with Two Customer Classes - Regular DF. 

 

Figure 10. Throughput with Two Customer Classes - Extended DF. 

5. Conclusion 

This manuscript proposes a method to fill the gap in the 
design methodology for MASs related to the performance 
and responsiveness of the system. The method prevents a 
MAS from entering such operational regimes that would 
saturate a system resource. To achieve this, the 
communication between agents is observed (i) to obtain the 
loading matrix and (ii) to observe the frequency of tasks 
arriving to the MAS. Based on the analysis of the derived 
loading matrix, the method excludes from the further 
consideration such resources that cannot become bottlenecks. 
The loading parameters of the potential bottlenecks generate 
a set of constrains on frequencies of arriving tasks that cannot 
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be exceeded unless some resources are saturated. The 
extended DF provides features to guarantee fulfillment of all 
constrains by delaying new tasks if needed. The experiments 
have confirmed the contribution of the method to the overall 
system performance. 

The methods provide many opportunities for future 
development. First of all, they can be generalized for an 
arbitrary event-based system. Next, the limiting requirement 
to trigger primary event by primary event to distinguish their 
impacts can be eliminated by an advanced method for 
estimating impacts of individual tasks that are influenced by 
other tasks statistically from multiple observations. Currently, 
the loading matrix is estimated at the beginning, since it is 
assumed that its values do not change in time. However, this 
assumption can be in some cases difficult to fulfill and an 
adaptation mechanism for the loading matrix might be 
requested in the future. 
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