

Automation, Control and Intelligent Systems
2014; 2(6): 105-111
Published online December 05, 2014 (http://www.sciencepublishinggroup.com/j/acis)
doi: 10.11648/j.acis.20140206.12
ISSN: 2328-5583 (Print); ISSN: 2328-5591 (Online)

Performance models preventing multi-agent systems from
overloading computational resources

Petr Kadera
1, *

, Petr Novak
1, 2

, Vaclav Jirkovsky
1, 3

, Pavel Vrba
1

1Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, CZ-169 00, Prague, Czech Republic
2Christian Doppler Laboratory for Software Engineering Integration for Flexible Automation Systems, Vienna University of Technology,

A-1040, Vienna, Austria
3Rockwell Automation Research and Development Center, CZ-150 00, Prague, Czech Republic

Email address:
petr.kadera@fel.cvut.cz (P. Kadera), novakp46@fel.cvut.cz (P. Novak), jirkova@fel.cvut.cz (V. Jirkovsky),
pavel.vrba@ciirc.cvut.cz (P. Vrba)

To cite this article:
Petr Kadera, Petr Novak, Vaclav Jirkovsky, Pavel Vrba. Performance Models Preventing Multi-Agent Systems from Overloading
Computational Resources. Automation, Control and Intelligent Systems. Vol. 2, No. 6, 2014, pp. 105-111. doi: 10.11648/j.acis.20140206.12

Abstract: Multi-Agent Systems (MASs) suffer from low immunity against burst of arrival requests which can result in a
permanent outage of such systems. This factor limits the suitability of MASs for control of real-world manufacturing systems
with strict requirements on performance and reliability. This manuscript explains the origins of the performance degradation of
MASs based on Contract-Net Protocol and proposes a method that protects the systems against the destructive effect of
temporal overloads. The proposed method continuously observes the communication among agents and analyzes it in order to
identify possible saturation of a system resource. If triggering a new action saturates a system resource, the carrying out of the
action will be postponed. The impacts of the method are demonstrated on a test-bed consisted of six mini-computers Raspberry
Pi. It shows that the proposed method avoids overloading of the system and thus guarantees a specific system throughput
effectively and efficiently.

Keywords: Holonic Systems, Multi-Agent Systems, Robustness, Reconfigurable Systems, Software Agents

1. Introduction

Multi-Agents Systems (MASs) have provided a new
abstraction paradigm for designing distributed and flexible
industrial control systems emphasizing attributes such as
autonomy, robustness, survivability, adaptation, and
reconfiguration [1][1][3]. Agents find optimal solutions at
runtime, which eliminates the need for preparing control
strategies for all possible scenarios in advance.

A shift of MASs from laboratory research to real world
deployment is slower than expected. This is caused by
multiple factors; one of them is a group of
performance-related problems of MASs caused by overload
of computational resources. This causes hardly predictable
delays or even prevents the MASs from converge to a
solution due to expired communication timeouts. This
manuscript proposes a method that protects the MASs based
on Contract-Net Protocol (CNP) against overloading caused
by bursts of requests. Providing such a protection is of the
highest importance because even a temporal burst of requests

can transfer the MAS to such a state from which the system
is not able to recover. Many concurrent actions overload
resources and prolong the execution times. This may lead to
the expiration of the negotiation timeouts. Then, agents
usually invoke new attempts to cooperate, but it repetitively
ends up with not passing the timeouts due to the reoccurring
overloads. This forms a never ending loop, from which the
agents cannot escape. In practice, this situation frequently
occurs in the system setup mode, when the initial state has to
be reflected in agent actions, as well as in the operation mode,
when external events come with excessive frequency.

In general, these problems are caused by saturation of
computational resources. Overloaded resources decrease the
agent responsiveness which might end up with exceeding the
communication timeouts. This fact closely corresponds with
another problem of MASs: it is difficult to find the optimal
setup of communication timeouts, which the agents use to
bound their waiting for responses. Too long timeouts
decrease the performance by waiting for messages that never
come (e.g. from a broken agent). On the other hand, the

106 Petr Kadera et al.: Performance Models Preventing Multi-Agent Systems from Overloading Computational Resources

communication timeouts cannot be too short either, because
it might disallow the system to converge to the best solution
as have been many times experienced during the work on the
Chilled Water System (CWS) application [4]. Moreover, the
optimal setup is specific for each system configuration
(including number of agents, computational performance of
used hardware, and system load). Thus, any hardware or
software change of the well-tuned system has to be followed
by a new timeout setup.

This manuscript proposes a method which replaces the fine
tuning of communication timeouts by a congestion control
mechanism that prevents the system from entering
overloaded operational regimes. The method breaks the
relation between timeout settings and the current system load.
This is achieved by the observation of the agent
communication and its analysis which provides information
how each initial request loads each of the system resources
(e.g. a CPU). These parameters form a Loading matrix,
which is used as input for the Operational analysis. It is an
analytical method that identifies among all resources
potential system bottlenecks. The saturation load in terms of
the frequency of arrival requests is then identified for the
bottleneck candidates.

The low computational complexity makes this method
applicable at runtime, where it extends capabilities of the
regular Directory Facilitator (DF). Consequently, the
extended DF can spread the possible burst of request into a
longer time period, in order to prevent any part of the system
against saturation. The method is directly applicable to
MASs utilizing the Contract-Net Protocol (CNP) [5] or its
extension Plan Commit Execute (PCE) protocol [6], because
the cooperation in such systems forms chains, where
initiators can be identified and then the successors can be
traced in order to estimate the overall impact of the initial
request. The method is further limited only to such systems
that use DFs for starting cooperation between agents.

Utilization of the method is demonstrated on a segment of
CWS containing one service agent (requests cold water), four
valve agents (connect water piping sections), and one chiller
agent (provides cold water). The experimental evaluation was
done on the test-bed consisted of six minicomputers
Raspberry Pi Model B (see Figure 1), which host Jade agents.

Figure 1. Testbed containing six minicomputers Raspberry Pi Model B.

2. Related Work

This section introduces selected methods, approaches, and
tools that increased the acceptance of MASs and distributed
embedded systems by industrial enterprises.

2.1. Methodologies for MASs

A lot of attention in the area of the development of a
methodology for holonic systems was paid within the research
program for Intelligent Manufacturing Systems (IMS). Within
its activities, two holonic architectures were developed –
PROSA [7] and ADACOR [8]. Both introduce sets of
guidelines to decompose manufacturing control functions into
communities of autonomous and cooperative entities called
holons. Recently, methods for validation of agent-based
manufacturing systems have become investigated.
ANEMONA [9] presents means for functional validation of
multi-agent architectures in conformance with specific trade
requirements.

2.2. Model-Based Diagnostics

MABLE [10] is a conventional imperative programming
language which is extended by constructs from MASs. The
agents designed in MABLE maintain their social knowledge
using linear temporal belief-desire-intention logic. The major
advantage of this approach is the ability to formally prove that
any interaction of agents will not lead to a fault state. On the
other hand, the fundamental disadvantage and perhaps the
stopper for the wider spread of this technique is the limited set
of constructs that an agent can use. In other words, the agent
has to be designed in the way suitable for MABEL from the
very beginning.

2.3. Formal Time Analysis for Embedded System

The domain of embedded systems is facing a dramatic
increase of the network complexity. For example, modern
automotive control systems contain more than fifty electronic
control units (ECUs) that are produced by various suppliers
[11]. The units are inter-connected via a communication
network representing a shared resource. It is necessary to
assure that a potential conflict in usage of the shared resource
would not lead to a dangerous situation. It means, for
example, the function of the Anti-lock braking system (ABS)
in a car must not be harmed by increased communication of
other systems. Similar problem and requirements come from
the aircraft industry and also from the designers of
multi-processor systems [12]. In general, networked or
distributed systems can be characterized by observing a high
amount of data flows within the network. To address the
challenges posed by the increased network complexity the
Network Calculus [13] and its extension Realtime calculus
[14] were introduced. Network Calculus enables evaluation
of timing properties of data flows in communication
networks. Realtime Calculus extends this concept to make it
suitable for real-time embedded systems. The basic idea
behind these two approaches is to substitute individual events

 Automation, Control and Intelligent Systems 2014; 2(6): 105-111 107

by data flows called event streams. The validation problem is
then transformed into the examination of flows, which can be
solved by efficient methods.

2.4. Qualitative and Quantitative Analysis of Industrial

Multi-Agent Systems

The investigation of methods for validation of MASs was
addressed by the EU FP7 research project GRACE [15]. One
of the project outputs is the methodology for qualitative
analysis based on Petri net modeling notation. The behavior
of each agent is represented as a single Petri net which can be
verified by the regular methods to find out whether the model
is bounded (the resource can only execute one operation at
time), reversible (the agent can reinitiate by itself) or out of
deadlocks (the agent can make at any state an action). The
extension of these models with concept of time provides
methods for quantitative analysis of multi-agent systems. The
transitions are extended with the time parameters to capture
the times of transition activations. Such a simulation shows
the evolution of the tokens over places and over the time. The
complete information about the progress of the agent
behavior is summarized with a Gantt chart. Unfortunately,
the development of the Petri net models is a time-consuming
process, which requires specialized skills.

2.5. Supportive Tools for Development of Multi-Agent

Systems

Debugging and tuning of MASs is a challenging process
that cannot be tackled by methods used for monolithic
applications such as debuggers and profilers. Particularly, the
multi-agent applications cannot be debugged step by step due
to the asynchronous communication between components.
Instead, logging mechanisms are used to capture the
time-lines of system events that are afterwards analyzed by
the programmer. Technically, a log is captured by a
specialized meta-agent that is usually called sniffer. A basic
sniffer is part of the Jade platform. Advanced features to
visualize the workflows provides Java Sniffer [16].

3. Scheduling of Operations in MASs

The prevention of MASs from entering overloaded
operational regimes is based on observation of
communication among agents. The fundamental part of the
method is the automated identification of loading matrices
from communication logs. In more details, the entire method
consists of six steps. First, the communication produced by a
MAS is logged and divided into groups according to the
initial events, i.e., every group consists of messages that are
successors of the same initial event. Second, the messages in
each group are causally ordered (from initiators to
participants) into tree structures. Such trees are called
workflows and the initial events are their roots. Third, the
workflows are analyzed to identify the loading matrix. Fourth,
operational analysis is utilized in order to identify the
bottleneck candidates. Fifth, the DF is extended by

scheduling features which prevent the system from triggering
too many activities in parallel. Sixth, the comparison of the
original and the improved MASs are presented to illustrate
the contribution of the method.

3.1. Communication Analysis

Many MAS platforms including JADE and Autonomous
Cooperative System (ACS) support logging (sniffing)
messages sent among agents. The proposed method builds on
this feature and develops a new sniffer that observes the
overall agent communication in a similar way as other
sniffers, but it adds the time analyzes of the logged messages,
whereas regular sniffers focus mainly on the visualization of
the communication. The new sniffer analysis causal relations
and timing of messages in order to obtain workflows, i.e.,
knowledge what are the initial messages and what are their
successors.

The global behavior of MASs emerges from local
interactions between components. These interactions have a
causality defined by roles of communicating agents:
initiator → participant. Because the participants can also
become to be initiators to re-distribute the received requests,
the interactions form cooperation chains called workflows. It
is necessary to identify these workflows to understand the
impact of the beginning request on the whole system. These
initial events are called Primary actions because they are
triggered by internal events in agents. They drive the agent's
proactivity as they cause that the agents initiate new
conversations as reactions to perceptions done inside of the
agents. A typical example from the industrial domain is an
agent that receives notifications from the low-level control
about a change of a data tag value. It causes a reaction of the
agent in terms of creating a new conversation with other
agents. The Secondary actions are reactions on received
messages coming from either Primary or another Secondary
action.

Messages sent among agents are composed according to
the FIPA ACL specification [17]. This specification defines a
set of mandatory parameters that each message contains.
These parameters are used to identify who the sender is and
which conversation the message belongs to. Such an
identification is necessary to enable agents to work on
multiple tasks in parallel without mixing up messages
coming from different conversations. To enable the backward
communication traceability, agents use parameter “Reply
With” to add additional pieces of information into messages.
The content of this field is composed iteratively by all agents
participating on the particular negotiation. The original seed
of the parameter creates the initiator of the communication
and stores in it its name and the number of the conversation,
in which this agent takes part (e.g.: svc1@100:0). The next
participant extends the content of this field by the “~”
character and its own identifier (e.g.
svc1@100:0~acp@100:310) and so on. This annotation is
sufficient for the reconstruction of the workflows.

108 Petr Kadera et al.: Performance Models Preventing Multi-Agent Systems from Overloading Computational Resources

Figure 2. Example of a workflow that illustrates a piece of negotiation in

CWS application. The bubble labels highlight parts of the messages sent

between agents.

In general, a communication log consists of multiple
workflows. The first step of the communication analysis is
the organization of the messages into individual workflows.
Using terminology of the graph theory, a workflow is a tree
(see Figure 2) and the whole communication is a forest of
such trees. The root of each workflow is the initiator of the
particular communication. Intermediate nodes represent
agents that are not capable to satisfy the received request on
their own, but are able to inquire other agents. Finally,
workflow leafs represent agents, who (i) can fully satisfy the
request or (ii) cannot and even are not able to involve into the
negotiation process any other participants.

The next step is the computation of the loading matrix. It is
a table (see Figure 3) containing information how each initial
request (Customer class in terminology of performance
models) Cr loads a resource (Job Center in terminology of
performance models) Ji. The load is derived from time
differences between input and output messages.

Figure 3. Loading Matrix.

The computation of a cell of the Loading Matrix is
illustrated on a concrete example. First, the communication is
captured by Sniffer. Second, the messages are organized into
workflows. Third, the load is computed from the time
differences. For example, the cell in the matrix corresponding
to the column for customer “Request from SVC1@100” and
the row representing resource which hosts agent “v1@100”
contains value 0.172 (17:05:55.093 - 17:05:54.921), i.e., time
in seconds representing the time distance between the input
and output message. The matrix is constructed row by row
and each row represents a workflow. If the workflow for a
specific initial request is received again, to old value are
overwritten by the new ones. Whenever the Loading Matrix
is changed, the updated values are sent to the DF.

3.2. The DF for Prevention against Overload

The proposed method benefits from a DF overview of
ongoing activities, because the DF enabled to start all of

them. This is combined with the loading matrix
communicated from the sniffer and serves as input for the
Operational analysis in details described in the next
paragraphs.

The Operational analysis [18][19] based on operational
laws is the most straightforward analytic technique for
performance considerations. It outperforms other approaches
in the speed, it is simple for implementation and does not
require any specialized skills. On the other hand, this
notation can be used only for systems with homogeneous
workload, i.e. the behavior of system components (jobs,
resources) is time invariant. Beside this, operational laws
cannot describe any notion of synchronization or exclusive
access.

Utilization law: The utilization is equal to the product of
the throughput and the mean service time.

Because the method proposed in this paper uses only the
utilization law, we will not introduce the other two
operational laws (i.e., Little's law and Forced flow law) in
detail.

The operational analysis was selected due to its low
computational complexity. The operational laws, as they
were introduced in [18], are directly applicable only in
single-class case, but the multi-class cases require extension
of the notation to handle various load coming from various
customer classes. This work adopts and further extends
method introduced by Casale [20].

Figure 4. Graphical representation of a loading matrix meaning.

The key idea of the proposed method is that all system
resources should be prevented from entering a saturated
operational mode, which decreases the throughput of the
particular resource and consequently of the whole system. To
achieve this, the loading matrix, respectively its graphical
representation, is used. Figure 4 depicts graphical
representation of a loading matrix of a system with two
customer classes. Points J1, J2, J3, and J4 represent
individual job centers (in this case CPUs hosting agents).
Their x- resp. y-coordinate represents the load imposed by
customer of class 1 resp. 2. It is worth noticing, that the
non-bottleneck JCs can be of two types. The first are

 Automation, Control and Intelligent Systems 2014; 2(6): 105-111 109

dominated by another JC (e.g. J4 is dominated by J2) or they
might be masked off by a combination of other centers (e.g.
J3 is masked off by the combination of J1 and J2). The
method constructs the convex hull around all job centers. The
job centers placed on a facet of the hull are the first ones
facing the danger of saturation, therefore it is sufficient to
keep out of the saturation these ones to guarantee that no
other JC becomes saturated. The formal definition of this
statement and its proof can be found in [20].

The transformation to the λ-space, where λr denotes the
arrival frequency of r-customer class, is needed for further
analysis.

λ={λ1,λ2,⋯,λr} is the vector of arrival frequencies of all
customer classes. The transformation is based on the
following equation:

Ui(λ) = λr * Lir (1)

For non-saturated stations holds:

Ui(λ) ≤ 1 (2)

where i iterates over the set of all bottleneck candidates as
were identified in the previous step.

The set of equations (2) defines the region, for which holds
that none of the resources is saturated.

3.3. Scheduling Extension of the DF

Figure 5. Architecture of a MAS with Sniffer and Extended DF, which

postpones the impracticable actions.

Attention was paid to the interoperability of the designed
method with existing systems. The final implementation
comprehends extension of two meta-agents — Sniffer and
DF (see Figure 5). The first one is an extension of the Java
Sniffer, which logs the messages and analyzes them in order
to derive the loading matrix L. The matrix is then
communicated via the regular messaging channel to the DF.
This meta-agent utilizes the matrix to detect, whether the
series of requests arriving to the system causes saturation of
any JC — in this case it is a computer hosting an agent. If the
danger of saturation is detected, the request is postponed to
match the maximum frequency under given conditions.

The Sniffer's part contains the regular and freely available

Java Sniffer, which is responsible for capturing the messages,
and further the newly developed extension, which computes
the load matrix from the timestamps of corresponding
messages. Beside this, the extension communicates its
observations to the DF. All components of this part are
written in pure Java and use only common libraries.

The DF's part extends the standard Jade's DF in three main
parts. The first one is the register implemented as a HashMap,
where keys are the request types and the values are
timestamps denoting the time of the last occurrence of the
request. A request type is a unique combination of an agent
and the requested service. For instance, if agent “A1”
requests service “cooling” then the request type is “A1cooling.”
The second part is related to the computation of the convex
hull. The computation itself is done in Matlab. The Matlab
version R2014a provides function for computation of convex
hull in n-dimensional space:

The input L is the loading matrix (the number of rows is
the number of JCs, columns refer to the dimension of the
space) and the output K is a matrix[x,y] - x is number convex
hull facets, y is the dimension. In other words, the first row
of matrix K contains indices of points from L that demarcate
the first facet. The bottleneck candidates are such points that
appears among the facet members. Set of constraints for
these possible bottlenecks is created according to the set of
equations (2).

When the DF is requested by an agent for a provider of a
particular service, the current λ is computed as follows:

For the currently received request — of n-th customer
class,

λi = 1/(tnow – tiL1), i = n (3)

λi = 1/(max(tnow – tiL1, tiL1 – tiL2)), i ≠n (4)

where tnow is the current time, tiL1 is the time, when the task i
was triggered last time and tiL2 is the time, when the task i
was triggered before the last occurrence. The procedure is
illustrated in Figure 6.

Figure 6. Computation of arrival frequencies.

Afterwards, the satisfaction of all constrains is tested. If
none of them is violated, the request is handled immediately.
Otherwise, the DF repeats the test after a relaxation time T
until all constrains are satisfied.

110 Petr Kadera et al.: Performance Models Preventing Multi-Agent Systems from Overloading Computational Resources

4. Experimental Evaluation

The first experiment confirms that the behavior of the real
distributed systems is coherent with the simulation results.
Using the test bed, we set up system with six Jade agents
representing a part of the CWS application. One agent
represents a service (the agent asking for cooling water), one
agent represents a chiller (the agent providing cooling water)
and four valve agents (the agents interconnecting segments of
the water-piping system). The cooperation schema is
depicted in Figure 2. The initiator of the communication is
the service agent svc1. It asks the DF for contacts to agents
providing cooling water. The DF provides contact (i.e., an
agent id used for addressing messages within the JADE
platform) to the chiller acp. The chiller communicates with
the valves (v1, v2, v3, and v4) in order to arrange the
transport of the cooling water to the svc1.

The plot (see Figure 7) depicts the relation between
frequency of request entering the system (Input Frequency)
and the frequency of finishing the jobs - system throughput.
The measured characteristic confirms the existence of the
throughput maximum.

Figure 7. Throughput with One Customer Class.

Figure 8. Passage Rate

The positive impact of using the extended version of the
DF is clearly shown in Figure 8. The points marked by
crosses represents measurements done with the regular JADE
system and it demonstrates that after crossing a certain
frequency the amount of jobs passed by a certain deadline

steeply decreases. On the other hand, the modified version of
the DF regulates the frequency of the input jobs, which leads
the preserving the passing rate at 100 %.

The further experiments were focused on systems with
more customer classes. We present the contribution of the
proposed approach on a 2-customer system, i.e., on a system,
where two types of customer requests occur. It was created
by extending the previous 1-customer experiment by a new
type of request, but still using the same test bed. The
measurements go along with the previous results regarding
the performance degradation, but on top of that also
demonstrates the strong influence across input frequency of
individual classes (see Figure 9 and Figure 10).

Figure 9. Throughput with Two Customer Classes - Regular DF.

Figure 10. Throughput with Two Customer Classes - Extended DF.

5. Conclusion

This manuscript proposes a method to fill the gap in the
design methodology for MASs related to the performance
and responsiveness of the system. The method prevents a
MAS from entering such operational regimes that would
saturate a system resource. To achieve this, the
communication between agents is observed (i) to obtain the
loading matrix and (ii) to observe the frequency of tasks
arriving to the MAS. Based on the analysis of the derived
loading matrix, the method excludes from the further
consideration such resources that cannot become bottlenecks.
The loading parameters of the potential bottlenecks generate
a set of constrains on frequencies of arriving tasks that cannot

 Automation, Control and Intelligent Systems 2014; 2(6): 105-111 111

be exceeded unless some resources are saturated. The
extended DF provides features to guarantee fulfillment of all
constrains by delaying new tasks if needed. The experiments
have confirmed the contribution of the method to the overall
system performance.

The methods provide many opportunities for future
development. First of all, they can be generalized for an
arbitrary event-based system. Next, the limiting requirement
to trigger primary event by primary event to distinguish their
impacts can be eliminated by an advanced method for
estimating impacts of individual tasks that are influenced by
other tasks statistically from multiple observations. Currently,
the loading matrix is estimated at the beginning, since it is
assumed that its values do not change in time. However, this
assumption can be in some cases difficult to fulfill and an
adaptation mechanism for the loading matrix might be
requested in the future.

Acknowledgements

This work was supported by the Grant Agency of the
Czech Technical University in Prague, grant No.
SGS12/188/OHK3/3T/13; and by the Christian Doppler
Forschungsgesellschaft, the Federal Ministry of Economy,
Family and Youth, and the National Foundation for Research,
Technology and Development – Austria.

References

[1] M. Pěchouček, S. Thompson, J. Baxter, G. Horn, K. Kok, C.
Warmer, R. Kamphuis, V. Mařík, P. Vrba, K. Hall, F. Maturana,
K. Dorer, M. Calisti, Agents in industry: the best from the
AAMAS 2005 industry track, IEEE Transactions on Intelligent
Systems, 21(2), 86 (2006). DOI 10.1109/MIS.2006.19J.

[2] P. Vrba, V. Mařík, P. Siano, P. Leitao, G. Zhabelova, V. Vyatkin,
T. Strasser, A Review of Agent and Service-oriented Concepts
applied to Intelligent Energy Systems, IEEE Transactions on
Industrial Informatics (99), 1 (2014). DOI
10.1109/TII.2014.2326411

[3] O. Yildirim, G. Kardas, A multi-agent system for minimizing
energy costs in cement production, Computers in Industry
65(7), 1076 (2014). DOI 10.1016/j.compind.2014.05.002

[4] P. Kadera, P. Tichý, Chilled water system control, simulation,
and visualization using Java multi-agent systém, Information
Control Problems in Manufacturing, vol. 13 (2009), vol. 13, pp.
1808-1813

[5] R.G. Smith, The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem Solver,
IEEE Transactions on Computers (12), 1104 (1980)

[6] P. Kadera, P. Tichy, Plan, commit, execute protocol in
multi-agent systems, Holonic and multi-agent systems for
manufacturing (Springer, 2009), pp. 155 – 164

[7] H.V. Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters,
Reference architecture for holonic manufacturing systems:
PROSA, Computers in Industry 37(3), 255 (1998). DOI
10.1016/S0166-3615(98)00102-X

[8] P. Leitao, F. Restivo, ADACOR: A holonic architecture for
agile and adaptive manufacturing control, Computers in
Industry 57(2), 121 (2006). DOI
10.1016/j.compind.2005.05.005

[9] A. Giret, V. Botti, Engineering Holonic Manufacturing
Systems, Computers in Industry 60(6), 428 (2009). DOI
10.1016/j.compind.2009.02.007

[10] M. Wooldridge, M. Fisher, M.P. Huget, S. Parsons, Model
checking multi-agent systems with MABLE, in Proceedings of
the first international joint conference on Autonomous agents
and multiagent systems: part 2 (ACM, 2002), pp. 952-959

[11] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, R.
Ernst, System Level Performance Analysis for Real-Time
Automotive Multicore and Network Architectures, IEEE
Transactions on Computer-Aided Design of integrated Circuits
and Systems, 28(7), 979 (2009)

[12] K. Richter, M. Jersak, R. Ernst, A formal approach to MpSoC
performance verification, Computer 36(4), 60 (2003)

[13] R. L. Cruz, A calculus for network delay, IEEE Transactions on
Information Theory, 37(1), 114 (1991)

[14] L. Thiele, S. Chakraborty, M. Naedele, Real-time calculus for
scheduling hard real-time systems, in Proceedings of IEEE
International Symposium on Circuits and Systems, vol. 4
(2000), pp. 101-104

[15] P. Leitao, N. Rodrigues, Modelling and validating the
multi-agent system behaviour for a washing machine
production line, in Proceedings of IEEE International
Symposium on Industrial Electronics (ISIE) (2012), pp.
1203-1208. DOI 10.1109/ISIE.2012.6237260

[16] J. Kubalík, P. Tichý, R. Šindelář, R.J. Staron, Clustering
Methods for Agent Distribution Optimization, IEEE
Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 40(1), 78 (2010)

[17] FIPA. Fipa ACL message structure specification (2002)

[18] P.J. Denning, J.P. Buzen, The operational analysis of queueing
network models, ACM Computing Surveys (CSUR) 10(3), 225
(1978)

[19] V. Cortellesa, A. D. Marco, P. Inverardi, Model-based software
performance analysis, Springer, 2011

[20] G. Casale, G. Serazzi, Bottlenecks identification in multiclass
queueing networks using convex polytopes, in Proceedings of
The IEEE Computer Society's 12th Annual International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 2004. pp.
223-230.

