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Abstract: It is well known that there is intercommunication among the different areas of the brain. However, till date, the 

rules of communication have not been successfully analyzed. The spike trains from neuronal cells have been simply treated as 

density-modulated waves with an activation level of the corresponding neuronal cells, or, at most, they have been analyzed 

using traditional metrics between sequences. The spike trains from neuronal cells have a random-like pattern that provides 

few clues regarding a coding rule. Here in a randomly generated artificial 3 × 3 multiplexed spatiotemporal communication 

neural network composed of threshold elements, we showed that pseudorandom sequences were generated during the 

simulation, similar to the random sequences generated by the cultured neural network of the rat brain. The transiently 

generated sequence patterns in the simulation were regarded as reflecting the circuit structure. These randomly shaped 

circuits generated pseudorandom sequences that functioned as codes for multiplexing communication. Although the circuit 

weights are randomly generated at present, it will be possible to extend this approach to determine the network weights by 

learning. This paper provides simulation results that support findings on cultured neural network. 

Keywords: M-Sequence, Neural Network, Pseudo Random Sequence, Spatiotemporal Communication, Spike Train 

 

1. Introduction 

We have developed a time-shift diagram method [1] for 

visualizing the propagation of brain waves. Figure 1 shows 

an example of a time-shift diagram in which the 

transmissions of magnetoencephalography (MEG) waves 

for a number counting task are shown with propagation 

times of less than 5 [ms] (in red; mainly within each 

hemisphere) and more than 10 [ms] (in blue; mainly across 

the callosum) [2]. Propagation times of 5–10 [ms] are 

indicated in green. When compared with the MRI dipole 

diagram method, which shows only a small number of 

major flows, our method follows an even smaller flow of 

signals. Questions arise as to how neuronal cells find their 

target cells and how the target cells obtain the necessary 

signals from the source neurons even if they are located at 

remote positions. Such multi-access communication 

requires codes. This issue served as the motivation for our 

research. However, till date, the rules of communication in 

the brain have not been successfully analyzed. The spike 

trains from neuronal cells have been treated simply as 

density-modulated waves with an activation level of the 

corresponding neuronal cells, and, at best, they have been 

analyzed using traditional metrics between sequences and 

from the viewpoint of spatial independent information. 

1.1. Research on Spike Coding 

To analyze spike trains, metrics between spike trains 

have been proposed via an alignment of distances and 

convolution metrics, including traditional rate coding [3]. 

However, the coding scheme of neurons has not been 

solved. 
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Figure.1. Time-shift diagram of 10.2 Hz MEG for a number-counting task; 

lag time < 5 ms (red) was primarily within each hemisphere and lag time > 

10 ms (blue) was across the callosum. Green: between 5–10 ms. 

1.2. Spatiotemporal Coding 

The extension of signals in a multidimensional manner 

permits dealing with many spatiotemporal patterns in 

artificial and natural neural networks [4-7]. In the visual 

system in particular, directional receptive fields, as seen in 

mammalian simple cells, emerge by a minimum 

information criterion [8] and an independent component 

analysis [9] for natural and facial images, i.e., spatially 

independent basis functions are derived by 

self-organization. Figure 2 shows how the receptive fields 

of the visual system are obtained by self-organization of the 

neural circuit with mutual inhibition to output only 

independent components [10]. Thus, it is reasonable to seek 

the temporally independent components of information 

representation in the brain as a pair of spatially independent 

components or seek the spatiotemporal information 

representation and communication coding scheme. 

 

Figure.2. Independent component extraction by mutual suppression in the visual system (dotted lines represent those that disappear after learning) 

1.3. Pseudorandom Codes from Cultured Neural 

Networks 

We have been analyzing the spike train structure of 

cultured neural networks to clarify intelligent processing in 

the brain [11-13]. We have decoded the spike trains of 

several samples of neural networks cultured on 8 × 8 

multi-electrodes. From these, we observed significantly 

more M-sequences than observed from interval shuffled 

trains, which are representative pseudorandom sequences. 

The question as to why neuronal spike sequences have a 

white-noise like pattern, such as M-sequences, then arises. 

Although many researchers have been tackling this 

problem, it has not yet been solved. The objective of this 

study is to support these in vivo data via simulation. 

The remainder of this paper is organized as follows: 

After presenting some background information in Section 2 

(as well as in the Appendix), we propose a 3 × 3 

spatiotemporal communication neural network model in 

Section 3 and present a discussion and conclusions in 

Section 4. 

 

2. M-Sequence 

An M-sequence is an important basis of communication 

theory and systems [14-17]. The electrical 3-cell linear 

feedback shift register (LFSR) shown in Fig. 3 cyclically 

generates the M-sequence “0010111” of length 7. The 

operation in the figure is performed by exclusive OR (xOR) 

according to the standard theory. Although there are some 

exceptional xOR neurons [18], this may be equivalently 

realized by the combination of threshold elements as a 

standard neuronal model. One such example is shown in 

the Appendix. 

 

Figure 3. Electrical linear feedback shift register with three logical 

elements (registers; cells) with an M-sequence output of length 7 ( ○＋ shows 

an Exclusive OR operation) 

The length of the M-sequence generated from n-cell LFSR 

is 2
n 

− 1. In the case of a 3-cell LFSR, only one type of 

M-sequence exists, with the exception of mirror order and 

rotationally shifted sequences. We refer to this as M3, which 

is shown in Table 1. Table 1 also shows a 4-cell case (M4). 
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Table 1. M3 and M4 M-sequences 

No. of Cells 

n 

Regular 

/Reversal 

Number and 

Comment 
M-Sequence 

3 

Reversal 

(Rev) 

(1) 1101000 

(2) mirror of (1) 1011000 

Regular 

(Non-Rev) 

(3) 0010111 

(4) mirror of (3) 0100111 

4 

Reversal 

(Rev) 

(5) 111011001010000 

(6) mirror of (5) 101001101110000 

Regular 

(Non-Rev) 

(7) 000100110101111 

(8) mirror of (7) 010110010001111 

Loop-shaped circuits, such as a LFSR, may become 

components of a large network or provide insights into 

larger loops in the intelligent network [19-22]. Furthermore, 

M-sequences are often used as codes in real communication 

systems, such as CDMA mobile phones, and may also 

become temporally independent components of information 

representation in the brain [10]. Therefore, we pay special 

attention to M-sequences as typical markers in the 

following sections and present some simulation results in 

the Appendix. 

3. Communication Model in a Neural 

Network 

3.1. Simplest Model 

We can simulate brain neural networks as 

threshold-element (cell) networks. Figure 4 shows the 

simplest model of 2 × 2 spatiotemporal multiplexed 

communication. Each neuronal cell denoted by ○ works as 

one of these threshold elements in a synchronous mode, 

such that if the sum of the weighted inputs to the element is 

more than 0, it outputs “1,” otherwise it outputs “0.” 

Therefore, input “1” to n1 is transmitted only to the 

opposite destination cell n3, and input “1” to n2 is 

transmitted to n4. 

 

Figure 4. Simple 2 × 2 spatiotemporal multiplex communication model 

3.2.  3 × 3 Spatiotemporal Multiplex Communication 

As shown above, we can simulate brain neural networks 

using threshold element networks. In Fig. 5, we show a 

simple 3 × 3 communication model. With regard to the 

general behavior of synchronous threshold element 

networks, please refer to the Appendix. 

 

Figure 5. A 3 × 3 communication model. Pulse “1” sent from neuron n3 is 

supposed to be received only by n18, that sent from n8 is supposed to be 

received by n23, and that sent by n13 is supposed to be received by n28. 

Here, signal “1” sent from cell n3 is not supposed to be 

received by n8, n13, n23, and n28. Signal “1” is to be received 

only by n18. Similarly, the n8 signal is supposed to be 

received by n23, while that of n13 is supposed to be received 

by n28. Each neuronal assembly of A1, A2, ..., A6 is set to be 

able to work to encode or decode the signal. Main loops 

{n1-n5-n6-n10-n11-n15-n16-n20-n21-n25-n26-n30-n1} are set to 

give not one but two paths to any communication channels 

of n3→n18, n8→n23, and n13→n28, i.e., each assembly works 

to encode/decode the signal and to pass such signals through 

that are not for its output neuron. Then, the signal can be 

spatiotemporally encoded. 

3.2.1. Wide Time Gate 

We generated networks with random weights (  ∈ {+1, 0, 

−1}) and selected those that satisfied the requirements 

mentioned above. We generated 2.012 × 10
8
 networks in 

which each weight on the main loop was bidirectionally 

fixed to +1, i.e., weights from n5 to n6 and n6 to n5 were +1, 

and so on. Other weights were randomly fixed to +1, 0, and 

−1, with probabilities of 1/3 for each. 

All cells in the network were synchronously driven. A 

single pulse “1” was given to the n3 cell at time 1, and the 

output number of “1” was counted between time 1 and 16 

at the n18 cell. Effectively, the count was between times 8 

and 16 at the destination cell because the pulse arrived at 

time 8. If the number of output “1” is the largest among {n8, 

n13, n18, n23, n28}, successful communication is achieved for 

the test of the n3→n18 channel. If the three communication 

channels of n3→n18, n8→n23, and n13→n28 are all successful 

in the same network, we classified the network as being 
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successful in the 3 × 3 multiplex communication. 

We obtained 141 successful networks with the desired 

function, i.e., the success rate was 7.01 × 10
−7

 or, in other 

words, one network per 1.43 × 10
6
 randomly generated 

networks exhibited 3 × 3 spatiotemporal multiplex 

communication. 

Figure 6 shows an example of a successful network. 

Figure 7 shows the flow of the codes that worked as 

markers of the information flow; almost all sequences 

generated from a cell were transient within the short time of 

the communication and were too long to analyze. Thus, to 

visualize the information flow, we selected several 

remarkable short codes with length ≦7 from the observed 

propagating wavefront sequence. We marked sequences 

“1011,” “10101,” “11111,” and “0010111.” “1011” is a core 

part of the reversal M-sequence “1011000;” “10101” is a 

typical alternating sequence of “0” and “1;” “11111” is a 

representative of long continuous “1” sequences; and 

“0010111” is a conventional non-reversal M-sequence. 

 

Figure 6.. Example of a network realizing 3 × 3 spatiotemporal multiplex 

communication (solid lines indicate a weight of +1 and dotted lines indicate 

a weight of −1) 

 

 

Figure 7. State transition diagram of the multiplex communication network 

shown in Fig. 6 with a wide time gate, where “1” is the input to n3 (top), n8 

(middle), and n13 (bottom). It can be considered that the source input “1” is 

encoded to “1011,” “11111,” and “10101” and finally gives the maximum 

output at the destination n18 (top), n23 (middle), and n28 (bottom), 

respectively. 

Input stimulation to one of {n3, n8, n13} was encoded by 

the corresponding cell assembly {A1, A2, A3} and spreads in 

both directions to the right and left of the loop. Sometimes 

they were transformed to another code at the passing cell 

assembly, decoded at the destination assembly, and 

transmitted to the destination cell. If the coming sequence 

is not for its assembly, the assembly does not take it in but 

passes it to the next assembly. 

 

Figure 8. Another example of network weight realizing a 3 × 3 

communication 

Figures 8 and 9 show another example. Here, a 

conventional non-reversal M-sequence, “0010111,” and 

reversal M-sequences, “1010001” and “0100011,” were 

generated by the initial source input pulse “1” to the n13 cell. 
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However, only the first code contributed to the output via 

an anticlockwise rotation route, whereas latter codes via a 

clockwise rotation route did not contribute. The maximum 

output was given from the destination cell n28. 

 

Figure 9. State-transition diagram of the communication network shown in 

Fig. 8. “1” is given to n13, which is internally encoded to the M-sequences 

“0010111,” “1010001,” and “0100011.” 

The temporal response function (time gate) at the 

receiving cell is shown in Fig. 10. In the case of a wide 

time gate, the number of “1s” at the destination cell is 

effectively counted after time 8, which represents the 

fastest arrival time of the pulse. 

 

Figure 10. Time gate weights at a receiving cell. Time 8 is the fastest arrival 

time of the pulse at the destination cell. In the case of a single time gate, 

only time 14 is shown. Double and triple time gates, which are the central 

part of LI-type gates, are not shown. 

3.2.2. Medium Time Gate 

In the network described in Section 3.2.1, the gate only 

counted the number of pulses that arrived at the destination 

cell during the observation period from time 1 to 16. In the 

medium time gate, we restricted the arrival period at the 

receiving cell, i.e., the “1s” that arrived at times 15 and 16 

were counted as penalties, and their number was subtracted 

from the number of “1s” that arrived between times 1 and 14 

(roughly counting pulses between time 8 and 12; see Fig. 10 

Medium). We obtained 222 successful networks from the 

2.295 × 10
8
 generated candidate networks. The success rate 

was 9.67 × 10
−7

, or, in other words, one network per 1.03 × 

10
6
 generated candidate networks met the required 

communication function. This figure was higher than that of 

the wide time gate. However, we consider that such 

communication tasks are still difficult. Figure 11 shows the 

number of codes of “1011,” “11111,” “10101,” and “1101” 

obtained at the pulse wavefront on the main loop. This result 

shows that rate distribution was influenced by the task of the 

network. There was a definite difference between the 

appearance average rates of “1011” of the wide time gate 

network and those of the medium time gate as an ensemble. 

However, because the appearance rates had large standard 

deviations, the average difference was not particularly 

important. In other words, there are many ways to realize a 

given task, as shown by the large standard deviations 

depicted in Fig.12, and the appearance rate reflects the 

structural difference only as an average. 

 

Figure 11. Major code spectrum of wide and medium time gate 

communication networks 

3.2.3. Single Time Gate 

In this case, we imposed a restriction of the time gate to 

specific single times of 8, 9, 10, 13, and 15. The 

corresponding success rates are shown in Fig. 12. 

 

Figure 12. Success rate of a random network for the communication tasks 

3.2.4. Double and Triple Time Gates 

In case of a double time gate, we combined two single 

time gates, such as D8–9, D9–10, D10–11, and D12–13. The 

corresponding success rates are shown in Fig. 13; the 

success rates of the double time gate are close to the average 

of the corresponding single time gates. Furthermore, we 

combined three single time gates, such as T9–10–11. In this 

case, the success rate was higher than that of each of the 

corresponding single time gates. 
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Figure 13. Success rates of a randomly generated network for a 3 × 3 

communication task with double/triple, LI gates, and their time shift gates. 

“Random generation” is a theoretical upper limit of a randomly generated 

network that can attain the given task by chance. 

3.2.5. Lateral Inhibition (LI) Type Time Gate 

Because the LI-type response is universal in natural 

neural networks, we applied it to the time response of the 

receiving cells. 

The central peak was fixed to weight 1 and width 2. The 

central positions were taken at times 8–9, 9–10, 10–11, and 

12–13. Four negative bases on both sides were set at a 

weight of −0.5. However, because the pulse arrived first at 

the destination cell at time 8, the front negative bases before 

time 8 were moved to the tail, as shown in Fig. 10. Each 

weight from time 8 to 16 was: 

LI8–9 = (1, 1, −0.5, −0.5, −0.5, −0.5, 0, 0, 0) 

LI9–10 = (−0.5, 1, 1, −0.5, −0.5, −0.5, 0, 0, 0) 

LI10–11 = (−0.5, −0.5, 1, 1, −0.5, −0.5, 0, 0, 0) 

LI12–13 = (0, 0, −0.5, −0.5, 1, 1, −0.5, −0.5, 0). 

The code spectrum obtained is shown in Fig. 14. Some 

average differences existed between these LIs. However, the 

standard deviations were close to these averages; therefore, 

we could only observe almost random pulse sequences. The 

situation was the same in the cases of a single time gate 

described in 3.2.3 in which the spectra were almost the same 

as those shown in Fig. 14. 

 

Figure 14. Code spectrum with standard deviation on the main loop of 

LI-type time gate communication networks 

The weight of the LI-type triple time gate was set as 

LI9–10–11 = (−1, 1, 1, 1, −0.5, −0.5, −0.5, −0.5, 0). 

3.2.6. Time Shift Gate 

The time-gate settings described above may create a bias 

to give the destination cell the maximum output, while 

potentially giving the non-destination cell located nearest to 

the source cell a lower output for pulses arriving through the 

shorter main loop route. To compensate for this bias, we 

shifted the center of the time gate of the halfway cells by 2, 4, 

and 6 according to the distance from the source cell. 

However, this remains incomplete at the point at which the 

pulses arriving through the longer main loop route are 

neglected. 

3.3. Success Rate for Communication 

We randomly generated networks, and if the network 

randomly gave the communication pair, the success rate 

ideally should become 5
−3

 = 1.6 × 10
−3

. However, the 

success rate of these networks with regard to communication 

was significantly different according to the type of time gate, 

as is shown in Figs. 12 and 13. The success rate of the wide 

time gate was the worst. In this time gate, there was no 

restriction on the arrival time of pulses, and only the pulses 

arriving at the receiving cell were counted. Single time gates, 

double time gates, and triple time gates had a better success 

rate. Among these, the faster time gate was relatively good. 

The LI-type time gates had the best success rate. In cases of 

LI9–10, LI10–11, and LI9–10–11, the success rate was 

approximately 10
−3

. The improvement in detectability 

according to the time-gate shape had two effects on the 

success rate. One is the direct effect of raising the success 

rate. The other is lowering the success rate by raising the 

detectability of non-destination cells. 

Figure 13 shows the success rates of time shift gates for 

double-type, triple-type, and LI-type time gates. LI-type 

time gates seemed to be sufficiently powerful for detecting 

the proper sequence. The time shift gates raised the 

detectability of non-destination cells, thus reducing the 

success rates. This shows that a bias of the time gate adjusted 

for destination cells helped detection at the destination cell. 

Figure 15 shows an example of a state-transition diagram of 

an LI-type time shift gate case. 

The success rates of all time gates were lower than 5
−3

 of 

the ideal random channel selection. The reasons for this 

observation may be that the random lines are sometimes 

disconnected, the network outputs the same levels, and the 

three directional tasks are not independent. However, 

LI-type reception is commonly effective in spatiotemporal 

communication with high success rates close to the ideal rate 

as well as in other general neural networks. 

 

Figure 15. Example of a state-transition diagram for a stimulation where 

“1” is given to n13 and an LI-type time shift gate is used 
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4. Discussion and Conclusions 

We believe that the communication function between 

neuronal cells provides a basis for the intelligence functions 

of the brain, such as memory, association, and abstraction. 

However, to date, the neuronal spike trains have been treated 

as random noise-like signals, and the coding scheme of the 

natural neural network has not been completely elucidated. 

We have been tackling this issue from a communication 

engineering viewpoint and have proposed a model of 

spatiotemporal multiplex communication. In this model, 

each cell works as a transmitting/receiving cell and as a relay 

cell, the roles of which are I/O and intermediate 

communication, respectively. In this sense, the network 

works like a multi-hop ad hoc communication network. 

Although only the shape of the network is given by 3 × 3 

spatiotemporal multiple communication loop types, various 

network shapes can be considered; for example, a 

homogeneous network without a pre-assigned loop. 

Moreover, there are various ways to determine the task of 

the communication, i.e., various possible network shapes 

can have additional routes to the destination and timings. 

This represents a problem of balance between space and 

time. 

We have shown that the simulated pulse sequence from 

each cell of the threshold element network resembled our 

experimental data, including the code spectrum. However, 

though not shown here, our experimental data were 

obtained in an unsorted state, including a single neuronal 

cell, and several neuronal cells and cell assemblies, such as 

synfire chains [23,24], which may cause synchronous 

spikes, including codes. Codes may be composed from 

these cell “groups,” which represents an open problem. 

We obtained target networks via random generation and 

selection. Although this method is useful to demonstrate the 

feasibility of such communication tasks, it is ineffective in 

real situations because of necessary computational capacity. 

In the brain, target networks are considered to be formed by 

learning. Therefore, we are now developing such networks 

based on learning. In addition, noise immunity, interference 

effects between communication channels and successive 

transmissions, and stability should be investigated. 

However, the objective of this paper is to demonstrate the 

feasibility of spatiotemporal multiplex communication in 

neural networks, and we believe we were able to show its 

feasibility using a minimum-size model. 

The content of this paper can be summarized as follows: 

1) A neural network with a spatiotemporal 

communication function was proposed. 

2) Each neuronal cell worked as a transmitting and 

receiving cell as well as a relay cell. 

3) Pulses running in the network seemed to be like noise, 

similar to the code observed in naturally cultured neuronal 

networks. 

 

Appendix 

Here, we present some results of an output analysis, 

particularly for the M-sequences included in the state 

transition output of each threshold element of the network 

in general. 

 

Figure A1. Output analysis of threshold cell network 

 

Figure A2. State transition of the network 

Figure A1 shows the method used to analyze the output 

of the network. At time t = 1, a single stimulation “1” is 

given to cell Ui; i∈{1, 2, …, n}, where n is the number of 

cells. Cell Uj; j∈{1, 2,…, n} gives an output of “0” if the 

sum of the weighted input given to Uj is ≦ 0 and “1” if this 

sum is > 0 synchronously in the network. The threshold is 0 

unless otherwise specified. Each weight is +1, 0, or −1. 

Generally, the state expressed by the combination of all cell 

states (“0” or “1”) changes with time, as shown in Fig. A2. 

A1. Four-Cell Network 

In this case, all possible 3
16

 = 43,046,721 networks could 

be generated non-randomly as a treatable maximum 

number. Although we did not use this approach, this 

number may be reduced by using the symmetric 

characteristic of the weights. Instead, stimulation was given 

only to a fixed cell, e.g., U1. 
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Figure A3. Period distribution of cycles of state transition in a 

4-threshold-cell network 

  

Figure A4. Threshold cell network with weights of ±1 and 0, which 

generates the M-sequence “1001110” from N1 for stimulation of “1” to N1 

The average number of cycles of state transition per 

network is shown in Fig. A3. Period 1 means that the state 

did become stationary. Some networks generated an 

M-sequence (see Fig. A4 for an example). The i, j entry of 

matrix C shows the connection weight from Nj to Ni. The 

output sequence from N1 is “1001110,” which is an 

inverse-order, rotationally-shifted, and non-reversed 

version of the M-sequence “1101000” listed in Table 1. 

A2. Number of M-Sequences Detected 

The output from each cell was checked among 32 clock 

times after stimulation. Then, the total number of 1.34 × 

10
10

 positions on the sequences was checked. The detected 

M-sequences are shown in Table A1, in which (1)–(4) 

correspond to those listed in Table 1. In this case, the rate 

of Non-Rev was larger than that of Rev. 

A3. Twelve-Cell Network 

In this case, we were no longer able to check all 

networks. Thus, we generated networks with various 

weights {+1, 0, −1}, as shown in Table A1. By changing 

the stimulation cell, the output from each cell was checked 

among 64 (practically 52 time positions) clock times after 

the stimulation. 

 

Table A1. Rate of M-sequences detected 

No. 

of Cells 

n 

Possible 

Networks 

Rate of Weights 

+1, 0, −1 

Generated 

Networks 

Sequence 

Positions 

Checked 

×106 

Rate of M3 (length 7) 

Rev 

[(1), (2)] 

×10−3 

Non-Rev 

[(3), (4)] 

×10−3 

4 316 

(All Checked) 

Equivalently 

1/3, 1/3, 1/3 

316 13,400 

6.61 

(4.47, 2.14) 

×10−5 

16.6 

(5.00, 11.6) 

×10−5 

12 3144 

0.4, 0.2, 0.4 6000 44.9 
12.0 

(6.08, 5.89) 

9.95 

(4.88, 5.07) 

0.3, 0.4, 0.3 6000 44.9 
11.1 

(5.59, 5.46) 

8.44 

(4.22, 4.22) 

0.1, 0.8, 0.1 3000 22.4 
1.53 

(0.785, 0.749) 

0.912 

(0.456, 0.456) 

0.15, 0.8, 0.05 23,000 172 
3.32 

(1.56, 1.76) 

2.94 

(1.69, 1.25) 

0.06, 0.92, 0.02 9,000 67.4 
0.117 

(0.0472, 0.0702) 

0.0802 

(0.0561, 0.0241) 

 

Figure A5 shows a time flow for the case of the weight 

rate of (0.1, 0.8, 0.1). Here, “Theor” represents the 

theoretical values calculated for cases in which the 

observed sequence was white random (no correlation 

within the sequence) and the observed “0” and “1” rates 

were used at each time position. The observed rates of the 

M-sequence code were rather low, with the exception of the 

initial time area. This means that the states at the initial 

time area are transient and close to the random state. In 

addition, after some time, the states shift to steady states 

that include final cyclic states, most of which are not 

M-sequence cycles, but are shorter (such as “1111111,” 

“0000000,” or “101010101”). 
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Figure A5. Number of M-sequences detected per cell and time. Symbols 

correspond to those listed in Table 1. “Theor” refers to the theoretical 

values under the assumption of a random sequence. Curves of Theor-(1) 

and (2) almost overlap. Curves of Theor-(3) and (4) also almost overlap. 

As a result, we can say that there was a tendency for the 

rate of Rev M-sequences, including those that are 

fragmental, to be greater than that of Non-Rev sequences. 

In addition, information from the source cell was included 

in the early transient period. This explains why we 

analyzed only the wavefront in this study. 
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